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Using Tangent Lines to Prove Inequalities 
 

Kin-Yin Li 

 
Olympiad Corner 
 
Below is the Czech-Polish-Slovak 
Match held in Zwardon on June 
20-21, 2005. 

 
Problem 1.  Let n be a given positive 
integer.  Solve the system of equations 
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in the set of nonnegative real numbers 
x1, x2, …, xn. 

 
Problem 2.  Let a convex quadrilateral 
ABCD be inscribed in a circle with 
center O and circumscribed to a circle 
with center I, and let its diagonals AC 
and BD meet at a point P.  Prove that the 
points O, I and P are collinear. 

 
Problem 3.  Determine all integers n ≥ 3 
such that the polynomial W(x) = xn − 
3xn−1 + 2xn−2 + 6 can be expressed as a 
product of two polynomials with 
positive degrees and integer 
coefficients. 

 
Problem 4.  We distribute n ≥ 1 labelled 
balls among nine persons A, B, C, D, E, 
F, G, H, I.  Determine in how many ways 
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For students who know calculus, 
sometimes they become frustrated in 
solving inequality problems when they 
do not see any way of using calculus.  
Below we will give some examples, 
where finding the equation of a tangent 
line is the critical step to solving the 
problems. 
 
Example 1.  Let a,b,c,d be positive real 
numbers such that a + b + c + d = 1. 
Prove that  

6(a3+b3+c3+d3) ≥ (a2+b2+c2+d2) + 1/8. 

Solution.  We have 0 < a, b, c, d < 1.  Let 
f(x) = 6x3 – x2.  (Note: Since there is 
equality when a = b = c = d = 1/4, we 
consider the graph of f(x) and its tangent 
line at x = 1/4.  By a simple sketch, it 
seems the tangent line is below the 
graph of f(x) on the interval (0,1).  Now 
the equation of the tangent line at x = 1/4 
is y = (5x – 1)/8.)  So we claim that for 0 
< x < 1, f(x) = 6x3 – x2 ≥ (5x – 1)/8.  This 
is equivalent to 48x3 − 8x2 − 5x + 1 ≥ 0. 
(Note: Since the graphs intersect at x = 
1/4, we expect 4x − 1 is a factor.)  
Indeed, 48x3 − 8x2 − 5x + 1 = (4x − 1)2 

(3x + 1) ≥ 0 for 0 < x < 1.  So the claim is 
true.  Then f(a) + f(b) + f(c) + f(d) ≥ 5(a 
+ b + c + d)/8 − 4/8 = 1/8, which is 
equivalent to the required inequality. 

 
Example 2. (2003 USA Math Olympiad) 
Let a,b,c be positive real numbers. 
Prove that 
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Solution.  Setting a' = a/(a + b + c), b' = 
b/(a + b + c), c' = c/(a + b + c) if 
necessary, we may assume 0 < a, b, c < 1 
and a + b + c = 1.  Then the first term on 
the left side of the inequality is equal to 
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(Note:  When a = b = c = 1/3, there is 
equality.  A simple sketch of f(x) on [0,1] 
shows the curve is below the tangent line

at x = 1/3, which has the equation y = 
(12x + 4)/3.)  So we claim that  
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for 0 < a < 1.  Multiplying out, we see 
this is equivalent to 36a3 − 15a2 − 2a + 1 
≥ 0 for 0 < a < 1.  (Note: Since the curve 
and the line intersect at a = 1/3, we 
expect 3a−1 is a factor.)  Indeed, 36a3 − 
15a2 − 2a + 1 = (3a − 1)2(4a + 1) ≥ 0 for 
0 < a < 1.  Finally adding the similar 
inequality for b and c, we get the desired 
inequality. 

 
The next example looks like the last 
example.  However, it is much more 
sophisticated, especially without using 
tangent lines.  The solution below is due 
to Titu Andreescu and Gabriel 
Dospinescu. 

 
Example 3.  (1997 Japanese Math 
Olympiad)  Let a,b,c be positive real 
numbers.  Prove that  
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Solution.  As in the last example, we 
may assume 0 < a, b, c < 1 and a + b + c 
= 1.  Then the first term on the left 
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Next, let x1 = 1 − 2a, x2 = 1 − 2b, x3 = 1 − 
2c, then x1 + x2 + x3 = 1, but −1 < x1, x2, 
x3 < 1.  In terms of x1, x2, x3, the desired 
inequality is  
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(Note: As in the last example, we 
consider the equation of the tangent line 
to f(x) = 1/(1 + x2) at x = 1/3, which is y 
= 27(−x + 2)/50.)  So we claim that f(x) 
≤ 27(−x + 2)/50 for −1 < x < 1.  This is 
equivalent to (3x − 1)2(4 − 3x) ≥ 0.  
Hence the claim is true for −1 < x < 1.  
Then f(x1) + f(x2) + f(x3) ≤ 27/10 and the 
desired inequality follows.  
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Schur’s Inequality 

 
Kin Yin Li 

 
Sometimes in proving an inequality, 
we do not see any easy way.  It will be 
good to know some brute force 
methods in such situation.  In this 
article, we introduce a simple 
inequality that turns out to be very 
critical in proving inequalities by brute 
force.  
 
Schur’s Inequality.  For any x, y, z ≥ 0 
and r > 0, 
 
     xr(x–y)(x–z) + yr(y–x)(y–z) 
 
                  + zr(z–x)(z–y) ≥ 0. 
 
Equality holds if and only if x = y = z or 
two of x, y, z are equal and the third is zero. 
 
Proof.  Observe that the inequality is 
symmetric in x, y, z.  So without loss of 
generality, we may assume x ≥ y ≥ z.  
Then xr(x – y)(x – z) ≥ yr(x – y)(y – z) so 
that the sum of the first two terms is 
nonnegative.  As the third term is also 
nonnegative, so the sum of all three 
terms is nonnegative.  In case x ≥ y ≥ z, 
equality holds if and only if x = y first 
and z equals to them or zero. 
 
In using the Schur’s inequality, we 
often expand out expressions.  So to 
simplify writing, we introduce the 

symmetric sum notation f(x,y,z) to  ∑
sym

denote the sum of the six terms f(x,y,z), 
f(x,z,y), f(y,z,x), f(y,x,z), f(z,x,y) and 
f(z,y,x).  In particular,  

∑
sym

x3 = 2x3 +2y3+2z3,  

∑
sym

x2y= x2y+x2z+y2z+y2x+z2x+z2y and 

∑
sym

xyz = 6xyz. 

Similarly, for a function of n variables, 
the symmetric sum is the sum of all n! 
terms, where we take all possible 
permutations of the n variables. 
 
The r = 1 case of Schur’s inequality is 
x(x–y)(x–z) + y(y–x)(y–z) + z(z–x)(z–y) 
= x3 + y3 + z3 – (x2y + x2z + y2x + y2z + 
z2x + z2y) + 3xyz ≥ 0.  In symmetric 
sum notation, it is  

∑ ≥+−
sym

xyzyxx 0)2( 23 .  

By expanding both sides and rearranging 
terms, each of the following inequalities is 
equivalent to the r = 1 case of Schur’s 
inequality.  These are common disguises. 
 
a)   x3+y3+z3+3xyz ≥ xy(x+y)+yz(y+z) 
                                     +zx(z+x), 
 
b)   xyz ≥ (x+y–z)(y+z–x)(z+x–y), 
 
c) 4(x+y+z)(xy+yz+zx) ≤ (x+y+z)3+9xyz. 
 
Example 1.  (2000 IMO)  Let a, b, c be 
positive real numbers such that abc = 1. 
Prove that 
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Solution.  Let x = a, y = 1, z = 1/b = ac.  
Then a = x/y, b = y/z and c = z/x.  
Substituting these into the desired 
inequality, we get 
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which is disguise b) of the r = 1 case of 
Schur’s inequality. 
 
Example 2.  (1984 IMO)  Prove that 
 

0 ≤ yz + zx + xy – 2xyz ≤ 7/27, 
 
where x, y, z are nonnegative real numbers 
such that x + y + z = 1. 
 
Solution.  In Schur’s inequality, all terms 
are of the same degree.  So we first change 
the desired inequality to one where all 
terms are of the same degree.  Since x + y + 
z = 1, the desired inequality is the same as 
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Expanding the middle expression, we get  

xyz+∑ x
sym

2y, which is clearly nonnegative 

and the left inequality is proved.  
Expanding the rightmost expression and 
subtracting the middle expression, we get  
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By Schur’s inequality, we have  

     ∑            (2) ≥+−
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xyzyxx 0)2( 23 .

By the AM-GM inequality, we have  

,)(6 6/16662 ∑∑ =≥
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which is the same as  

             ∑              (3) ≥−
sym

xyzyx .0)( 2

Multiplying (3) by 2/7 and adding it to 
(2), we see the symmetric sum in (1) is 
nonnegative.  So the right inequality is 
proved.  
 
Example 3.  (2004 APMO)  Prove that 
 

)(9)2)(2)(2( 222 cabcabcba ++≥+++  
for any positive real numbers a,b,c. 
 
Solution.  Expanding and expressing in 
symmetric sum notation, the desired 
inequality is 

(abc)2+∑ (a
sym

2b2+2a2)+8 ≥
2
9 ∑

sym
ab. 

As a2+b2≥2ab, we get ∑
sym

a2 ≥∑
sym

ab. 

As a2b2 + 1 ≥ 2ab, we get  

∑
sym

a2b2 + 6  ≥ 2∑
sym

ab. 

Using these, the problem is reduced to 
showing 

(abc)2 + 2 ≥∑ (ab –
sym 2

1 a2). 

To prove this, we apply the AM-GM 
inequality twice and disguise c) of the r 
= 1 case of Schur’s inequality as follow: 
 
 
 
(abc)2 +2 ≥ 3(abc)2/3

                         ≥  9abc/(a+b+c) 
 
 
 
               ≥ 4(ab+bc+ca) – (a+b+c)2

                = 2(ab+bc+ca) – (a2+b2+c2) 

                =∑ (ab –
sym 2

1 a2). 

 
Example 4.  (2000 USA Team Selection 
Test)  Prove that for any positive real 
numbers a, b, c, the following 
inequality holds 
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(continued on page 4) 
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Problem Corner 
 
We welcome readers to submit their 
solutions to the problems posed below 
for publication consideration.  The 
solutions should be preceded by the 
solver’s name, home (or email) address 
and school affiliation.  Please send 
submissions to Dr. Kin Y. Li, Department 
of Mathematics, The Hong Kong 
University of Science & Technology, 
Clear Water Bay, Kowloon, Hong Kong.  
The deadline for submitting solutions is 
February 12, 2006. 
 
Problem 241.  Determine the smallest 

ossible value of  p
 

S = a1·a2·a3 + b1·b2·b3 + c1·c2·c3,  
if a1, a2, a3, b1, b2, b3, c1, c2, c3 is a 
permutation of the numbers 1, 2, 3, 4, 5, 
6, 7, 8, 9. (Source: 2002  Belarussian 
Math. Olympiad) 
 
Problem 242.  Prove that for every 
positive integer n, 7 is a divisor of 3n + 
n3 if and only if 7 is a divisor of 3nn3 + 1. 
(Source: 1995 Bulgarian Winter Math 
Competition) 
 
Problem 243.  Let R+ be the set of all 
positive real numbers.  Prove that there 
s no function f : Ri

 
+ →R+ such that  

( ) ( yxfyxfxf ++≥ )()()( 2  
 
for arbitrary positive real numbers x 
and y. (Source: 1998 Bulgarian Math 
Olympiad) 
 
Problem 244.  An infinite set S of 
coplanar points is given, such that 
every three of them are not collinear 
and every two of them are not nearer 
than 1cm from each other.  Does there 
exist any division of S into two disjoint 
infinite subsets R and B such that 
inside every triangle with vertices in R 
is at least one point of B and inside 
every triangle with vertices in B is at 
least one point of R?  Give a proof to 
your answer.  (Source: 2002 Albanian 
Math Olympiad) 
 
Problem 245.  ABCD is a concave 
quadrilateral such that ∠BAD =∠ABC 
=∠CDA = 45˚.  Prove that AC = BD. 
 

***************** 
Solutions 

**************** 
 
Problem 236.  Alice and Barbara order 
a pizza.  They choose an arbitrary point 

P, different from the center of the pizza 
and they do three straight cuts through P, 
which pairwise intersect at 60˚ and divide 
the pizza into 6 pieces.  The center of the 
pizza is not on the cuts.  Alice chooses one 
piece and then the pieces are taken 
clockwise by Barbara, Alice, Barbara, 
Alice and Barbara.  Which piece should 
Alice choose first in order to get more 
pizza than Barbara?  (Source: 2002 
Slovenian National Math Olympiad) 
 
Solution.  (Official Solution) 
 
Let Alice choose the piece that contains 
the center of the pizza first.  We claim that 
the total area of the shaded regions below 
is greater than half of the area of the pizza.  

O

B CP

B'

C'

A D

A'

D'

P'

P"

 
Without loss of generality, we can assume 
the center of the pizza is at the origin O 
and one of the cuts is parallel to the x-axis 
(that is, BC is parallel to AD in the picture). 
Let P’ be the intersection of the x-axis and 
the 60˚-cut.  Let A’D’ be parallel to the 
120˚-cut B’C’.  Let P’’ be the intersection 
of BC and A’D’.  Then ∆PP’P” is 
equilateral.  This implies the belts ABCD 
and A’B’C’D’ have equal width. Since AD 
> A’D’, the area of the belt ABCD is 
greater than the area of the belt A’B’C’D’. 
Now when the area of the belt ABCD is 
subtracted from the total area of the 
shaded regions and the area of A’B’C’D’ 
is then added, 
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A D
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we get exactly half the area of the pizza. 
Therefore, the claim follows. 
 

Problem 237.  Determine (with proof) 
all polynomials p with real coefficients 
such that p(x) p(x + 1) = p(x2) holds for 
every real number x.  (Source: 2000 
Bulgarian Math Olympiad) 
 
Solution.  YEUNG Wai Kit (STFA 
Leung Kau Kui College, Form 5). 
 
Let p(x) be such a polynomial.  In case 
p(x) is a constant polynomial, p(x) must 
be 0 or 1.  For the case p(x) is 
nonconstant, let r be a root of p(x).  Then 
setting x = r and x + 1 = r in the equation, 
we see r2 and (r − 1)2 are also roots of 
p(x).  Also, r2 is a root implies (r2 − 1)2 is 
also a root.  If 0 < |r| < 1 or |r| > 1, then 
p(x) will have infinitely many roots r, r2, 
r4, …, a contradiction.  So |r| = 0 or 1 for 
every root r. 
 
The case |r| = 1 and |r − 1| = 1 lead to 

2/)31( ir ±= , but then |r2 − 1| ≠ 0 or 1, a 
contradiction.  Hence, either |r| = 0 or |r − 
1| = 0, that is, r = 0 or 1. 
 
So p(x) = xm(x−1)n for some nonnegative 
integers m, n.  Putting this into the 
equation, we find m = n.  Conversely, p(x) 
= xm(x − 1)m is easily checked to be a 
solution for every nonnegative integer m. 
 
Problem 238.  For which positive 
integers n, does there exist a 
permutation (x1, x2, …, xn) of the 
numbers 1, 2, …, n such that the 
number x1 + x2+ ⋯ + xk is divisible by k 
for every k∈{1,2, …, n}?  (Source: 
1998 Nordic Mathematics Contest) 
 
Solution.  G.R.A. 20 Math Problem 
Group (Roma, Italy), LEE Kai Seng 
(HKUST), LO Ka Wai (Carmel Divine 
Grace Foundation Secondary School, Form 
7), Anna Ying PUN (STFA Leung Kau Kui 
College, Form 7) and YEUNG Wai Kit 
(STFA Leung Kau Kui College, Form 5). 
 
For a solution n, since x1 + x2 + ⋯ + xn 
= n(n + 1)/2 is divisible by n, n must be 
odd.  The cases n = 1 and n = 3 (with 
permutation (1,3,2)) are solutions. 
 
Assume n ≥ 5.  Then x1 + x2 + ⋯ + xn−1 = 
n(n + 1)/2 − xn ≡ 0 (mod n − 1) implies 
xn ≡ (n + 1)/2 (mod n − 1).  Since 1 ≤ xn ≤ 
n and 3 ≤ (n + 1)/2 ≤ n − 2, we get xn = (n 
+ 1)/2.  Similarly, x1 + x2 + ⋯ + xn−2 = 
n(n + 1)/2 − xn − xn−1 ≡ 0 (mod n − 2) 
implies xn−1 ≡ (n + 1)/2 (mod n − 2).  
Then also xn−1 = (n + 1)/2, which leads 
to xn = xn−1, a contradiction.  Therefore, 
n = 1 and 3 are the only solutions. 
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Problem 239.  (Due to José Luis 
Díaz-Barrero, Universitat Politècnica 
de Catalunya, Barcelona, Spain)  In 
any acute triangle ABC, prove that  
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Solution.  (Proposer’s Solution) 
 
By cosine law and the AM-GM 
inequality, 
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By sine law and cos(A/2) = sin((B+C)/2), 
we get 
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Adding two similar inequalities, we get 
the desired inequality. 
 
Commended solvers: Anna Ying PUN 
(STFA Leung Kau Kui College, Form 7) 
and YEUNG Wai Kit (STFA Leung 
Kau Kui College, Form 5). 
  
Problem 240.  Nine judges 
independently award the ranks of 1 to 
20 to twenty figure-skaters, with no 
ties.  No two of the rankings awarded 
to any figure-skater differ by more than 
3.  The nine rankings of each are added. 
What is the maximum of the lowest of 
the sums?  Prove your answer is correct. 
(Source: 1968 All Soviet Union Math 
Competitions) 
 
Solution. WONG Kwok Kit (Carmel 
Divine Grace Foundation Secondary 
School, Form 7) and YEUNG Wai Kit 
(STFA Leung Kau Kui College, Form 5). 
 
Suppose the 9 first places go to the same 
figure skater.  Then 9 is the lowest sum. 

Suppose the 9 first places are shared by two 
figure skaters.  Then one of them gets at 
least 5 first places and that skater’s other 
rankings are no worse than fourth places. So 
the lowest sum is at most 5 × 1 + 4 × 4 = 21. 
 
Suppose the 9 first places are shared by 
three figure skaters.  Then the other 18 
rankings of these figure skaters are no 
worse than 9 third and 9 fourth places.  
Then the lowest sum is at most 9(1 + 3 + 
4)/3 = 24. 
 
Suppose the 9 first places are shared by 
four figure skaters.  Then their rankings 
must be all the first, second, third and 
fourth places. So the lowest sum is at most 
9(1 + 2 + 3 + 4)/4 < 24.  
 
Suppose the 9 first places are shared by k > 
4 figure skaters.  On one hand, these k 
skaters have a total of 9k > 36 rankings.  
On the other hand, these k skaters can only 
be awarded first to fourth places, so they 
can have at most 4 × 9 = 36 rankings all 
together, a contradiction. 
 
Now 24 is possible if skaters A, B, C all 
received 3 first, 3 third and 3 fourth places; 
skater D received 5 second and 4 fifth 
places; skater E received 4 second and 5 
fifth places; and skater F received 9 sixth 
places, …, skater T received 9 twentieth 
places.  Therefore, 24 is the answer. 
 

 
 
Olympiad Corner 

(continued from page 1) 
 
Problem 4. (Cont.)  it is possible to 
distribute the balls under the condition 
that A gets the same number of balls as the 
persons B, C, D and E together. 
 
Problem 5.  Let ABCD be a given convex 
quadrilateral.  Determine the locus of the 
point P lying inside the quadrilateral 
ABCD and satisfying  

[PAB]·[PCD] = [PBC]·[PDA], 

where [XYZ] denotes the area of triangle 
XYZ. 
 
Problem 6.  Determine all pairs of 
integers (x,y) satisfying the equation  

y(x + y) = x3 − 7x2 + 11x − 3. 
 

 
 

Schur’s Inequality 
(continued from page 2) 

 
 
Solution.  From the last part of the 
solution of example 3, we get 
 
3(xyz)2/3 ≥ 2(xy + yz + zx) – (x2 + y2 + z2) 
 
for any x, y, z > 0.  (Note: this used 
Schur’s inequality.)  Setting  

,ax = by =   and  cz =  
and arranging terms, we get 
 
   33 abccba −++

)(2 cabcabcba −−−++≤  
222 )()()( accbba −+−+−=  

}.)(,)(,)max{(3 222 accbba −−−≤
 
Dividing by 3, we get the desired 
inequality. 
 
Example 5.  (2003 USA Team Selection 
Test)  Let a,b,c be real numbers in the 
interval (0, π/2).  Prove that 
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Solution.  Observe that 
 
sin(u – v) sin(u + v) = (cos 2v – cos 2u)/2 
                                  =  sin2 u – sin2v.  
 
Setting x = sin2a, y = sin2b, z = sin2c, in 
adding up the terms, the left side of the 
inequality becomes 

.
)sin()sin()sin(

))(())(())((
baaccb

yzxzzxyzyyzxyxx
+++

−−+−−+−−  

This is nonnegative by the r = 1/2 case 
of Schur’s inequality. 
 
For many more examples on Schur’s 
and other inequalities, we highly 
recommend the following book. 
 
Titu Andreescu, Vasile Cîrtoaje, 
Gabriel Dospinescu and Mircea Lascu, 
Old and New Inequalities, GIL 
Publishing House, 2004. 
 
Anyone interested may contact the 
publisher by post to GIL Publishing 
House, P. O. Box 44, Post Office 3, 
450200, Zalau, Romania or by email to 
gil1993@zalau.astral.ro. 
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