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TWO USEFUL SUBSTITUTIONS

We know that in most inequalities with a constraint such as abc = 1

the substitution a =
x

y
, b =

y

z
, c =

z

x
simplifies the solution (don’t kid

yourself, not all problems of this type become easier!). But have you ever

thought about other similar substitutions? For example, what if we had

the conditions x, y, z > 0 and xyz = x + y + z + 2? Or x, y, z > 0 and

xy + yz + zx + 2xyz = 1? There are numerous problems that reduce

to these conditions and to their corresponding substitutions. You will

be probably surprised when finding out that the first set of conditions

implies the existence of positive real numbers a, b, c such that

x =
b + c

a
, y =

c + a

b
, z =

a + b

c
.

Let us explain why. The condition xyz = x+y+z+2 can be written

in the following equivalent way:

1
1 + x

+
1

1 + y
+

1
1 + z

= 1.

Proving this is just a matter of simple computations. Take now

a =
1

1 + x
, b =

1
1 + y

, c =
1

1 + z
.

Then a + b + c = 1 and x =
1− a

a
=

b + c

a
. Of course, in the same

way we find y =
c + a

b
, z =

a + b

c
. The converse (that is,

b + c

a
,

c + a

b
,

a + b

c
satisfy xyz = x+ y + z = 2) is much easier and is settled again by

basic computations. Now, what about the second set of conditions? If

you look carefully, you will see that it is closely related to the first one.

Indeed, x, y, z > 0 satisfy xy + yz + zx + 2xyz = 1 if and only if
1
x

,
1
y
,

1
z

verify
1

xyz
=

1
x

+
1
y

+
1
z

+ 2, so the substitution here is

x =
a

b + c
, y =

b

c + a
, z =

c

a + b
.
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So, let us summarize: we have seen two nice substitutions, with even

nicer proofs, but we still have not seen any applications. We will see

them in a moment ... and there are quite a few inequalities that can be

solved by using these ”tricks”.

First, an easy and classical problem, due to Nesbitt. It has so many

extensions and generalizations, that we must discuss it first.

Example 1. Prove that

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2

for all a, b, c > 0.

Solution. With the ”magical” substitution, it suffices to prove that

if x, y, z > 0 satisfy xy + yz + zx + 2xyz = 1, then x + y + z =
3
2
.

Let us suppose that this is not the case, i.e. x + y + z <
3
2
. Because

xy + yz + zx ≤ (x + y + z)2

3
, we must have xy + yz + zx <

3
4

and

since xyz ≤
(

x + y + z

3

)3

, we also have 2xyz <
1
4
. It follows that

1 = xy + yz + zx + 2xyz <
3
4

+
1
4

= 1, a contradiction, so we are done.

Let us now increase the level of difficulty and make an experiment:

imagine that you did not know about these substitutions and try to

solve the following problem. Then look at the solution provided and you

will see that sometimes a good substitution can solve a problem almost

alone.

Example 2. Let x, y, z > 0 such that xy + yz + zx + 2xyz = 1.

Prove that
1
x

+
1
y

+
1
z
≥ 4(x + y + z).

Mircea Lascu, Marian Tetiva

Solution. With our substitution the inequality becomes

b + c

a
+

c + a

b
+

a + b

c
≥ 4

(
a

b + c
+

b

c + a
+

c

a + b

)
.
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But this follows from

4s

b + c
≤ a

b
+

a

c
,

4b

c + a
≤ b

c
+

b

a
,

4c

a + b
≤ c

a
+

c

b
.

Simple and efficient, these are the words that characterize this sub-

stitution.

Here is a geometric application of the previous problem.

Example 3. Prove that in any acute-angled triangle ABC the fol-

lowing inequality holds

cos2 A cos2 B+cos2 B cos2 C+cos2 C cos2 A ≤ 1
4
(cos2 A+cos2 B+cos2 C).

Titu Andreescu

Solution. We observe that the desired inequality is equivalent to

cos A cos B

cos C
+

cos B cos C

cos A
+

cos A cos C

cos B
≤

≤ 1
4

(
cos A

cos B cos C
+

cos B

cos C cos A
+

cos C

cos A cos B

)
Setting

x =
cos B cos C

cos A
, y =

cos A cos C

cos B
, z =

cos A cos B

cos C
,

the inequality reduces to

4(x + y + z) ≤ 1
x

+
1
y

+
1
z
.

But this is precisely the inequality in the previous example. All that

remains is to show that xy + yz + zx + 2xyz = 1. This is equivalent to

cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1,

a well-known identity, proved in the chapter ”Equations and beyond”.

The level of difficulty continues to increase. When we say this, we

refer again to the proposed experiment. The reader who will try first to

solve the problems discussed without using the above substitutions will

certainly understand why we consider these problems hard.
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Example 4. Prove that if x, y, z > 0 and xyz = x + y + z + 2, then

2(
√

xy +
√

yz +
√

zx) ≤ x + y + z + 6.

Mathlinks site

Solution. This is tricky, even with the substitution. There are two

main ideas: using some identities that transform the inequality into

an easier one and then using the substitution. Let us see. What does

2(
√

xy +
√

yz +
√

zx) suggest? Clearly, it is related to

(
√

x +
√

y +
√

z)2 − (x + y + z).

Consequently, our inequality can be written as

√
x +

√
y +

√
z ≤

√
2(x + y + z + 3).

The first idea that comes to mind (that is using the Cauchy-

Schwarz inequality in the form
√

x +
√

y +
√

z ≤
√

3(x + y + z) ≤√
2(x + y + z + 3)) does not lead to a solution. Indeed, the last inequal-

ity is not true: setting x+y+z = s, we have 3s ≤ 2(s+3). This is because

from the AM-GM inequality it follows that xyz ≤ s3

27
, so

s3

27
≥ s + 2,

which is equivalent to (s− 6)(s + 3)2 ≥ 0, implying s ≥ 6.

Let us see how the substitution helps. The inequality becomes√
b + c

a
+

√
c + a

b
+

√
a + b

c
≤

√
2
(

b + c

a
+

c + a

b
+

a + b

c
+ 3
)

The last step is probably the most important. We have to change

the expression
b + c

a
+

c + a

b
+

a + b

c
+ 3 a little bit.

We see that if we add 1 to each fraction, then a + b + c will appear

as common factor, so in fact

b + c

a
+

c + a

b
+

a + b

c
+ 3 = (a + b + c)

(
1
a

+
1
b

+
1
c

)
.
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And now we have finally solved the problem, amusingly, by employ-

ing again the Cauchy-Schwarz inequality:√
b + c

a
+

√
c + a

b
+

√
a + b

c
≤

√
(b + c + c + a + a + b)

(
1
a

+
1
b

+
1
c

)
.

We continue with a 2003 USAMO problem. There are many proofs

for this inequality, none of them easy. The following solution is again not

easy, but it is natural for someone familiar with this kind of substitution.

Example 5. Prove that for any positive real numbers a, b, c the

following inequality holds

(2a + b + c)2

2a2 + (b + c)2
+

(2b + c + a)2

2b2 + (c + a)2
+

(2c + a + b)2

2c2 + (a + b)2
≤ 8.

Titu Andreescu, Zuming Feng, USAMO 2003

Solution. The desired inequality is equivalent to(
1 +

b + c

a

)2

2 +
(

b + c

a

)2 +

(
2 +

c + a

b

)2

2 +
(

c + a

b

)2 +

(
1 +

a + b

c

)2

2 +
(

a + b

c

)2 ≤ 8.

Taking our substitution into account, it suffices to prove that if xyz =

x + y + z + 2, then

(2 + x)2

2 + x2
+

(2 + y)2

2 + y2
+

(2 + z)2

2 + z2
≤ 8.

This is in fact the same as

2x + 1
x2 + 2

+
2y + 1
y2 + 2

+
2z + 1
z2 + 2

≤ 5
2
.

Now, we transform this inequality into

(x− 1)2

x2 + 2
+

(y − 1)2

y2 + 2
+

(z − 1)2

z2 + 2
≥ 1

2
.

This last form suggests using the Cauchy-Schwarz inequality to prove

that
(x− 1)2

x2 + 2
+

(y − 1)2

y2 + 2
+

(z − 1)2

z2 + 2
≥ (x + y + z − 3)2

x2 + y2 + z2 + 6
.
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So, we are left with proving that 2(x+y + z−3)2 ≥ x2 +y2 + z2 +6.

But this is not difficult. Indeed, this inequality is equivalent to

2(x + y + z − 3)2 ≥ (x + y + z)2 − 2(xy + yz + zx) + 6.

Now, from xyz ≥ 8 (recall who x, y, z are and use the AM-GM

inequality three times), we find that xy+yz +zx ≥ 12 and x+y+z ≥ 6

(by the same AM-GM inequality). This shows that it suffices to prove

that 2(s−3)2 ≥ s2−18 for all s ≥ 6, which is equivalent to (s−3)(s−6) ≥
0, clearly true. And this difficult problem is solved!

The following problem is also hard. We have seen a difficult solution

in the chapter ”Equations and beyond”. Yet, there is an easy solution

using the substitutions described in this unit.

Example 6. Prove that if x, y, z ≥ 0 satisfy xy + yz + zx + xyz = 4

then x + y + z ≥ xy + yz + zx.

India, 1998

Solution. Let us write the given condition as

x

2
· y

2
+

y

2
· z

2
+

z

2
· x

2
+ 2

x

2
· y

2
· z

2
= 1.

Hence there are positive real numbers a, b, c such that

x =
2a

b + c
, y =

2b

c + a
, z =

2c

a + b
.

But now the solution is almost over, since the inequality

x + y + z ≥ xy + yz + zx

is equivalent to

a

b + c
+

b

c + a
+

c

a + b
≥ 2ab

(c + a)(c + b)
+

2bc

(a + b)(a + c)
+

2ca

(b + a)(b + c)
.

After clearing denominators, the inequality becomes

a(a + b)(a + c) + b(b + a)(b + c) + c(c + a)(c + b) ≥
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≥ 2ab(a + b) + 2bc(b + c) + 2ca(c + a).

After basic computations, it reduces to

a(a− b)(a− c) + b(b− a)(b− c) + c(c− a)(c− b) ≥ 0.

But this is Schur’s inequality!

We end the discussion with a difficult problem, in which the substi-

tution described plays a key role. But this time using the substitution

only will not suffice.

Example 7. Prove that if x, y, z > 0 satisfy xyz = x + y + z + 2,

then xyz(x− 1)(y − 1)(z − 1) ≤ 8.

Gabriel Dospinescu

Solution. Using the substitution

x =
b + c

a
, y =

c + a

b
, z =

a + b

c
,

the inequality becomes

(a + b)(b + c)(c + a)(a + b− c)(b + c− a)(c + a− b) ≤ 8a2b2c2 (1)

for any positive real numbers a, b, c. It is readily seen that this form is

stronger than Schur’s inequality (a + b− c)(b + c− a)(c + a− b) ≤ abc.

First, we may assume that a, b, c are the sides of a triangle ABC, since

otherwise the left-hand side in (1) is negative. This is true because no

more than one of the numbers a+b−c, b+c−a, c+a−b can be negative.

Let R be the circumradius of the triangle ABC. It is not difficult to find

the formula

(a + b− c)(b + c− a)(c + a− b) =
a2b2c2

(a + b + c)R2
.

Consequently, the desired inequality can be written as

(a + b + c)R2 ≥ (a + b)(b + c)(c + a)
8

.
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But we know that in any triangle ABC, 9R2 ≥ a2 + b2 + c2. Hence

it suffices to prove that

8(a + b + c)(a2 + b2 + c2) ≥ 9(a + b)(b + c)(c + a).

This inequality follows from the following ones:

8(a + b + c)(a2 + b2 + c2) ≥ 8
3
(a + b + c)3

and

9(a + b)(b + c)(c + a) ≤ 1
3
(a + b + c)3.

The first inequality reduces to

a2 + b2 + c2 ≥ 1
3
(a + b + c)2,

while the second is a consequence of the AM-GM inequality. By com-

bining these two results, the desired inequality follows.

Problems for training

1. Prove that if x, y, z > 0 satisfy xy + yz + zx + 2xyz = 1, then

xyz ≤ 1
8

and xy + yz + zx ≥ 3
4
.

2. Prove that for any positive real numbers a, b, c the following in-

equality holds

b + c

a
+

c + a

b
+

a + b

c
≥ a

b + c
+

b

c + a
+

c

a + b
+

9
2
.

J. Nesbitt

3. Prove that if x, y, z > 0 and xyz = x + y + z + 2, then

xy + yz + zx ≥ 2(x + y + z) and
√

x +
√

y +
√

z ≤ 3
2
√

xyz.

4. Let x, y, z > 0 such that xy + yz + zx = 2(x + y + z). Prove that

xyz ≤ x + y + z + 2.

Gabriel Dospinescu, Mircea Lascu
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5. Prove that in any triangle ABC the following inequality holds

cos A + cos B + cos C ≥ 1
4
(3 + cos(A−B) + cos(B − C) + cos(C −A)).

Titu Andreescu

6. Prove that in every acute-angled triangle ABC,

(cos A + cos B)2 + (cos B + cos C)2 + (cos C + cos A)2 ≤ 3.

7. Prove that if a, b, c > 0 and x = a+
1
b
, y = b+

1
c
, z = c+

1
a
, then

xy + yz + zx ≥ 2(x + y + z).

Vasile Cartoaje

8. Prove that for any a, b, c > 0,

(b + c− a)2

(b + c)2 + a2
+

(c + a− b)2

(c + a)2 + b2
+

(a + b− c)2

(a + b)2 + c2
≥ 3

5
.

Japan, 1997
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ALWAYS CAUCHY-SCHWARZ

In recent years the Cauchy-Schwarz inequality has become one of

the most used results in elementary mathematics, an indispensable tool

of any serious problem solver. There are countless problems that reduce

readily to this inequality and even more problems in which the Cauchy-

Schwarz inequality is the key idea of the solution. In this unit we will

not focus on the theoretical results, since they are too well-known. Yet,

seeing the Cauchy-Schwarz inequality at work is not so well spread out.

This is the reason why we will see this inequality in action in several

simple examples first, employing then gradually the Cauchy-Schwarz

inequality in some of the most difficult problems.

Let us begin with a very simple problem, a direct application of the

inequality. Yet, it underlines something less emphasized: the analysis of

the equality case.

Example 1. Prove that the finite sequence a0, a1, . . . , an of positive

real numbers is a geometrical progression if and only if

(a2
0 +a2

1 + · · ·+a2
n−1)(a

2
1 +a2

2 + · · ·+a2
n) = (a0a1 +a1a2 + · · ·+an−1an)2.

Solution. We see that the relation given in the problem is in fact

the equality case in the Cauchy-Schwarz inequality. This is equivalent to

the proportionality of the n-tuples (a0, a1, . . . , an−1) and (a1, a2, . . . , an),

that is
a0

a1
+

a1

a2
= · · · = an−1

an
.

But this is just actually the definition of a geometrical progression.

Hence the problem is solved. Note that Lagrange’s identity allowed us

to work with equivalences.

Another easy application of the Cauchy-Schwarz inequality is the

following problem. This time the inequality is hidden in a closed form,
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which suggests using calculus. There exists a solution by using deriva-

tives, but it is not as elegant as the featured one:

Example 2. Let p be a polynomial with positive real coefficients.

Prove that p(x2)p(y2) ≥ p2(xy) for any positive real numbers x, y.

Russian Mathematical Olympiad

Solution. If we work only with the closed expression p(x2)p(y2) ≥
p2(xy), the chances of seeing a way to proceed are small. So, let us write

p(x) = a0 + a1x + · · ·+ anxn. The desired inequality becomes

(a0 + a1x
2 + · · ·+ anx2n)(a0 + a1y

2 + · · ·+ any2n)

≥ (a0 + a1xy + · · ·+ anxnyn)2.

And now the Cauchy-Schwarz inequality comes into the picture:

(a0 + a1xy + · · ·+ anxnyn)2

= (
√

a0 ·
√

a0 +
√

a1x2 ·
√

a2y2 + · · ·+
√

anxn ·
√

anyn)2

≤ (a0 + a1x
2 + · · ·+ anx2n)(a0 + a1y

2 + · · ·+ any2n).

And the problem is solved. Moreover, we see that the conditions

x, y > 0 are useless, since we have of course p2(xy) ≤ p2(|xy|). Addi-

tionally, note an interesting consequence of the problem: the function

f : (0,∞) → (0,∞), f(x) = ln p(ex) is convex, that is why we said in

the introduction to this problem that it has a solution based on calculus.

The idea of that solution is to prove that the second derivative of is non-

negative. We will not prove this here, but we note a simple consequence:

the more general inequality

p(xk
1)p(xk

2) . . . p(xk
k) ≥ pk(x1x2 . . . xk),

which follows the Jensen’s inequality for the convex function f(x) =

ln p(ex).
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Here is another application of the Cauchy-Schwarz inequality, though

this time you might be surprised why the ”trick” fails at a first approach:

Example 3. Prove that if x, y, z > 0 satisfy
1
x

+
1
y

+
1
z

= 2, then

√
x− 1 +

√
y − 1 +

√
z − 1 ≤

√
x + y + z.

Iran, 1998

Solution. The obvious and most natural approach is to apply the

Cauchy-Schwarz inequality in the form

√
x− 1 +

√
y − 1 +

√
z − 1 ≤

√
3(x + y + z − 3)

and then to try to prove the inequality
√

3(x + y + z − 3) ≤
√

x + y + z,

which is equivalent to x + y + z ≤ 9
2
. Unfortunately, this inequality is

not true. In fact, the reversed inequality holds, that is x + y + z ≥ 9
2
,

since 2 =
1
x

+
1
y

+
1
z
≥ 9

x + y + z
. Hence this approach fails. Then, we

try another approach, using again the Cauchy-Schwarz inequality, but

this time in the form

√
x− 1+

√
y − 1+

√
z − 1 =

√
a ·
√

x− 1
a

+
√

b ·
√

y − 1
b

+
√

c ·
√

z − 1
c

≤

√
(a + b + c)

(
x− 1

a
+

y − 1
b

+
z − 1

c

)
.

We would like to have the last expression equal to
√

x + y + z. This

encourages us to take a = x, b = y, c = z, since in this case

x− 1
a

+
y − 1

b
+

z − 1
c

= 1 and a + b + c = x + y + z.

So, this idea works and the problem is solved.

We continue with a classical result, the not so well-known inequality

of Aczel. We will also see during our trip through the exciting world of

the Cauchy-Schwarz inequality a nice application of Aczel’s inequality.
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Example 4. Let a1, a2, . . . , an, b1, b2, . . . , bn be real numbers and let

A,B > 0 such that

A2 ≥ a2
1 + a2

2 + · · ·+ a2
n or B2 ≥ b2

1 + b2
2 + · · ·+ b2

n.

Then

(A2 − a2
1 − a2

2 − · · · − a2
n)(B2 − b2

1 − b2
2 − · · · − b2

n)

≤ (AB − a1b1 − a2b2 − · · · − anbn)2.

Solution. We observe first that we may assume that

A2 > a2
1 + a2

2 + · · ·+ a2
n and B2 > b2

1 + b2
2 + · · ·+ b2

n.

Otherwise the left-hand side of the desired inequality is smaller than

or equal to 0 and the inequality becomes trivial. From our assumption

and the Cauchy-Schwarz inequality, we infer that

a1b1+a2b2+· · ·+anbn ≤
√

a2
1 + a2

2 + · · ·+ a2
n·
√

b2
1 + b2

2 + · · ·+ b2
n < AB

Hence we can rewrite the inequality in the more appropriate form

a1b1 + a2b2 + · · ·+ anbn +
√

(A2 − a)(B2 − b) ≤ AB,

where a = a2
1 + a2

2 + · · · + a2
n and b = b2

1 + b2
2 + · · · + b2

n. Now, we can

apply the Cauchy-Schwarz inequality, first in the form

a1b1+a2b2+· · ·+anbn+
√

(A2 − a)(B2 − b) ≤
√

ab+
√

(A2 − a)(B2 − b)

and then in the form
√

ab +
√

(A2 − a)(B2 − b) ≤
√

(a + A2 − a)(b + B2 − b) = AB.

And by combining the last two inequalities the desired inequality

follows.

As a consequence of this inequality we discuss the following problem,

in which the condition seems to be useless. In fact, it is the key that

suggests using Aczel’s inequality.
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Example 5. Let a1, a2, . . . , an, b1, b2, . . . , bn be real numbers such

that

(a2
1+a2

2+· · ·+a2
n−1)(b2

1+b2
2+· · ·+b2

n−1) > (a1b1+a2b2+· · ·+anbn−1)2.

Prove that a2
1 + a2

2 + · · ·+ a2
n > 1 and b2

1 + b2
2 + · · ·+ b2

n > 1.

Titu Andreescu, Dorin Andrica, TST 2004, USA

Solution. At first glance, the problem does not seem to be related

to Aczel’s inequality. Let us take a more careful look. First of all, it

is not difficult to observe that an indirect approach is more efficient.

Moreover, we may even assume that both numbers a2
1 +a2

2 + · · ·+a2
n−1

and b2
1 + b2

2 + · · · + b2
n − 1 are negative, since they have the same sign

(this follows immediately from the hypothesis of the problem). Now, we

want to prove that

(a2
1 + a2

2 + · · ·+ a2
n − 1)(b2

1 + b2
2 + · · ·+ b2

n − 1)

≤ (a1b1 + a2b2 + · · ·+ anbn − 1)2 (1)

in order to obtain the desired contradiction. And all of a sudden we

arrived at the result in the previous problem. Indeed, we have now the

conditions 1 > a2
1 + a2

2 + · · · + a2
n and 1 > b2

1 + b2
2 + · · · + b2

n, while the

conclusion is (1). But this is exactly Aczel’s inequality, with A = 1 and

B = 1. The conclusion follows.

Of a different kind, the following example shows that an apparently

very difficult inequality can become quite easy if we do not complicate

things more than necessary. It is also a refinement of the Cauchy-Schwarz

inequality, as we can see from the solution.

Example 6. For given n > k > 1 find in closed form the best con-

stant T (n, k) such that for any real numbers x1, x2, . . . , xn the following
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inequality holds:∑
1≤i<j≤n

(xi − xj)2 ≥ T (n, k)
∑

1≤i<j≤k

(xi − xj)2.

Gabriel Dospinescu

Solution. In this form, we cannot make any reasonable conjecture

about T (n, k), so we need an efficient transformation. We observe that∑
1≤i<j≤n

(xi − xj)2 is nothing else than n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

and also

∑
1≤i<j≤k

(xi − xj)2 = k
k∑

i=1

x2
i −

(
k∑

i=1

xi

)2

,

according to Lagrange’s identity. Consequently, the inequality can be

written in the equivalent form

n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2

≥ T (n, k)

k

k∑
i=1

x2
i −

(
k∑

i=1

xi

)2
 .

And now we see that it is indeed a refinement of the Cauchy-Schwarz

inequality, only if in the end it turns out that T (n, k) > 0. We also

observe that in the left-hand side there are n − k variables that do not

appear in the right-hand side and that the left-hand side is minimal

when these variables are equal. So, let us take them all to be zero. The

result is

n

k∑
i=1

x2
i −

(
k∑

i=1

xi

)2

≥ T (n, k)

k

k∑
i=1

x2
i −

(
k∑

i=1

xi

)2
 ,

which is equivalent to

(T (n, k)− 1)

(
k∑

i=1

xi

)2

≥ (kT (n, k)− n)
k∑

i=1

x2
i (1)

16



Now, if kT (n, k)−n > 0, we can take a k-tuple (x1, x2, . . . , xk) such

that
k∑

i=1

xi = 0 and
k∑

i=1

x2
i 6= 0 and we contradict the inequality (1).

Hence we must have kT (n, k) − n ≤ 0 that is T (n, k) ≤ n

k
. Now, let us

proceed with the converse, that is showing that

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2

≥ n

k

k
k∑

i=1

x2
i −

(
k∑

i=1

xi

)2
 (2)

for any real numbers x1, x2, . . . , xn. If we manage to prove this inequality,

then it will follow that T (n, k) =
n

k
. But (2) is of course equivalent to

n
n∑

i=k+1

x2
i ≥

(
n∑

i=1

xi

)2

− n

k

(
k∑

i=1

xi

)2

.

Now, we have to apply the Cauchy-Schwarz inequality, because we

need
n∑

i=k+1

xi. We find that

n

n∑
i=k+1

x2
i ≥

n

n− k

(
n∑

i=k+1

xi

)2

and so it suffices to prove that

n

n− k
A2 ≥ (A + B)2 − n

k
B2, (3)

where we have taken A =
n∑

i=k+1

xi and B =
k∑

i=1

xi. But (3) is straight-

forward, since it is equivalent to

(kA− (n− k)B)2 + k(n− k)B2 ≥ 0,

which is clear. Finally, the conclusion is settled: T (n, k) =
n

k
is the best

constant.

We continue the series of difficult inequalities with a very nice prob-

lem of Murray Klamkin. This time, one part of the problem is obvious
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from the Cauchy-Schwarz inequality, but the second one is not immedi-

ate. Let us see.

Example 7. Let a, b, c be positive real numbers. Find the extreme

values of the expression√
a2x2 + b2y2 + c2z2 +

√
b2x2 + c2y2 + a2z2 +

√
c2x2 + a2y2 + b2z2

where x, y, z are real numbers such that x2 + y2 + z2 = 1.

Murray Klamkin, Crux Mathematicorum

Solution. Finding the upper bound does not seem to be too difficult,

since from the Cauchy-Schwarz inequality it follows that√
a2x2 + b2y2 + c2z2 +

√
b2x2 + c2y2 + a2z2 +

√
c2x2 + a2y2 + b2z2 ≤

≤
√

3(a2x2 + b2y2 + c2z2 + c2y2 + a2z2 + c2x2 + a2y2 + b2z2)

=
√

3(a2 + b2 + c2).

We have used here the hypothesis x2 + y2 + z2 = 1. Thus,√
3(a2 + b2 + c2) is the upper bound and this value if attained for

x = y = z =
√

3
3

.

But for the lower bound things are not so easy. Investigating what

happens when xyz = 0, we conclude that the minimal value should be

a + b + c, attained when two variables are zero and the third one is 1 or

−1. Hence, we should try to prove the inequality√
a2x2 + b2y2 + c2z2 +

√
b2x2 + c2y2 + a2z2

+
√

c2x2 + a2y2 + b2z2 ≥ a + b + c.

Why not squaring it? After all, we observe that

a2x2 +b2y2 +c2z2 +b2x2 +c2y2 +a2z2 +c2x2 +a2y2 +b2z2 = a2 +b2 +c2,

so the new inequality cannot have a very complicated form. It becomes√
a2x2 + b2y2 + c2z2 ·

√
b2x2 + c2y2 + a2z2

18



+
√

b2x2 + c2y2 + a2z2 ·
√

c2x2 + a2y2 + b2z2

+
√

c2x2 + a2y2 + b2z2 ·
√

a2x2 + b2y2 + c2z2 ≥ ab + bc + ca

which has great chances to be true. And indeed, it is true and it follows

from what else?, the Cauchy-Schwarz inequality:√
a2x2 + b2y2 + c2z2 ·

√
b2x2 + c2y2 + a2z2 ≥ abx2 + bxy2 + caz2

and the other two similar inequalities. This shows that the minimal value

is indeed a + b + c, attained for example when (x, y, z) = (1, 0, 0).

It is now time for the champion inequalities. We will discuss two

hard inequalities and after that we will leave for the reader the pleasure

of solving many other problems based on these techniques.

Example 8. Prove that for any nonnegative numbers a1, a2, . . . , an

such that
n∑

i=1

ai =
1
2
, the following inequality holds

∑
1≤i<j≤n

aiaj

(1− ai)(1− aj)
≤ n(n− 1)

2(2n− 1)2
.

Vasile Cartoaje

Solution. This is a very hard problem, in which intuition is better

than technique. We will concoct a solution using a combination between

the Cauchy-Schwarz inequality and Jensen’s inequality, but we warn the

reader that such a solution cannot be invented easily. Fasten your seat

belts! Let us write the inequality in the form(
n∑

i=1

ai

1− ai

)2

≤
n∑

i=1

a2
i

(1− ai)2
+

n(n− 1)
(2n− 1)2

.

We apply now the Cauchy-Schwarz inequality to find that(
n∑

i=1

ai

1− ai

)2

≤

(
n∑

i=1

ai

)(
n∑

i=1

ai

(1− ai)2

)
=

n∑
i=1

ai

2
(1− ai)2

.
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Thus, it remains to prove the inequality

n∑
i=1

ai

2
(1− ai)2

≤
n∑

i=1

a2
i

(1− ai)2
+

n(n− 1)
(2n− 1)2

.

The latter can be written of course in the following form:

n∑
i=1

ai(1− 2ai)
(1− ai)2

≤ 2n(n− 1)
(2n− 1)2

.

This encourages us to study the function

f :
[
0,

1
2

]
→ R, f(x) =

x(1− 2x)
(1− x)2

and to see if it is concave. This is not difficult, for a short computa-

tion shows that f ′′(x) =
−6x

(1− x)4
≤ 0. Hence we can apply Jensen’s

inequality to complete the solution.

We end this discussion with a remarkable solution, found by the

member of the Romanian Mathematical Olympiad Committee, Claudiu

Raicu, to the difficult problem given in 2004 in one of the Romanian

Team Selection Tests.

Example 9. Let a1, a2, . . . , an be real numbers and let S be a non-

empty subset of {1, 2, . . . , n}. Prove that(∑
i∈S

ai

)2

≤
∑

1≤i≤j≤n

(ai + · · ·+ aj)2.

Gabriel Dospinescu, TST 2004, Romania

Solution. Let us define si = a1 + a2 + · · ·+ ai for i ≥ 1 and s0 = 0.

Now, partition S into groups of consecutive numbers. Then
∑
i∈S

ai is of

the form sj1−si1+sj2−si2+· · ·+sjk
−sik , with 0 ≤ i1 < i2 < · · · < ik ≤ n,

j1 < j2 < · · · < jk and also i1 < j1, . . . , ik < jk. Now, let us observe that
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the left-hand side is nothing else than
n∑

i=1

s2
i +

∑
1≤i<j≤n

(sj − si)2 =
∑

1≤i<j≤n+1

(sj − si)2.

Hence we need to show that

(sj1 − si1 + sj2 − si2 + · · ·+ sjk
− sik)2 ≤

∑
0≤i<j≤n+1

(sj − si)2.

Let us take a1 = si1 , a2 = sj1 , . . . , a2k−1 = sik , a2k = sjk
and observe

the obvious (but important) inequality∑
0≤i<j≤n+1

(sj − si)2 ≥
∑

1≤i<j≤2k

(ai − aj)2.

And this is how we arrived at the inequality

(a1 − a2 + a3 − · · ·+ a2k−1 − a2k)2 ≤
∑

1≤i<j≤2k

(ai − aj)2 (1)

The latter inequality can be proved by using the Cauchy-Schwarz

inequality k-times:

(a1 − a2 + a3 − · · ·+ a2k−1 − a2k)2

≤ k((a1 − a2)2 + (a3 − a4)2 + · · ·+ (a2k−1 − a2k)2)

(a1 − a2 + a3 − · · ·+ a2k−1 − a2k)2

≤ k((a1 − a4)2 + (a3 − a6)2 + · · ·+ (a2k−1 − a2)2)

. . .

(a1 − a2 + a3 − · · ·+ a2k−1 − a2k)2

≤ k((a1 − a2k)2 + (a3 − a2)2 + · · ·+ (a2k−1 − a2k−2)2)

and by summing up all these inequalities. In the right-hand side we

obtain an even smaller quantity than
∑

1≤i<j≤2k

(ai − aj)2, which proves

that (1) is correct. The solution ends here.
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Problems for training

1. Let a, b, c be nonnegative real numbers. Prove that

(ax2 + bx + c)(cx2 + bx + a) ≥ (a + b + c)2x2

for all nonnegative real numbers x.

Titu Andreescu, Gazeta Matematica

2. Let p be a polynomial with positive real coefficients. Prove that

if p

(
1
x

)
≥ 1

p(x)
is true for x = 1, then it is true for all x > 0.

Titu Andreescu, Revista Matematica Timisoara

3. Prove that for any real numbers a, b, c ≥ 1 the following inequality

holds:
√

a− 1 +
√

b− 1 +
√

c− 1 ≤
√

a(bc + 1).

4. For any positive integer n find the number of ordered n-tuples of

integers (a1, a2, . . . , an) such that

a1 + a2 + · · ·+ an ≥ n2 and a2
1 + a2

2 + · · ·+ a2
n ≤ n3 + 1.

China, 2002

5. Prove that for any positive real numbers a, b, c,

1
a + b

+
1

b + c
+

1
c + a

+
1

2 3
√

abc
≥ (a + b + c + 3

√
abc)2

(a + b)(b + c)(c + a)
.

Titu Andreescu, MOSP 1999

6. Let a1, a2, . . . , an, b1, b2, . . . , bn be real numbers such that∑
1≤i<j≤n

aiaj > 0.

Prove the inequality ∑
1≤i6=j≤n

aibj

2

≥

 ∑
1≤i6=j≤n

aiaj

 ∑
1≤i6=j≤n

bibj


Alexandru Lupas, AMM
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7. Let n ≥ 2 be an even integer. We consider all polynomials of the

form xn + an−1x
n−1 + · · ·+ a1x + 1, with real coefficients and having at

least one real zero. Determine the least possible value of a2
1 + a2

2 + · · ·+
a2

n−1.

Czech-Polish-Slovak Competition, 2002

8. The triangle ABC satisfies the relation(
cot

A

2

)2

+
(

2 cot
B

2

)2

+
(

3 cot
C

2

)2

=
(

6s

7r

)2

.

Show that ABC is similar to a triangle whose sides are integers and

find the smallest set of such integers.

Titu Andreescu, USAMO 2002

9. Let x1, x2, . . . , xn be positive real numbers such that

1
1 + x1

+
1

1 + x2
+ · · ·+ 1

1 + xn
= 1.

Prove the inequality

√
x1 +

√
x2 + · · ·+

√
xn ≥ (n− 1)

(
1
√

x1
+

1
√

x2
+ · · ·+ 1

√
xn

)
.

Vojtech Jarnik Competition, 2002

10. Given are real numbers x1, x2, . . . , x10 ∈
[
0,

π

2

]
such that

sin2 x1 + sin2 x2 + · · ·+ sin2 x10 = 1.

Prove that

3(sinx1 + sin x2 + · · ·+ sin x10) ≤ cos x1 + cos x2 + · · ·+ cos x10.

Saint Petersburg, 2001

11. Prove that for any real numbers a, b, c, x, y, z the following in-

equality holds

ax + by + cz +
√

(a2 + b2 + c2)(x2 + y2 + z2) ≥ 2
3
(a + b + c)(x + y + z).

Vasile Cartoaje, Kvant
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12. Prove that for any real numbers x1, x2, . . . , xn the following in-

equality holds(
n∑

i=1

n∑
i=1

|xi − xj |

)2

≤ 2(n2 − 1)
3

 n∑
i=1

n∑
j=1

|xi − xj |2
 .

IMO 2003

13. Let n > 2 and x1, x2, . . . , xn be positive real numbers such that

(x1 + x2 + · · ·+ xn)
(

1
x1

+
1
x2

+ · · ·+ 1
xn

)
= n2 + 1.

Prove that

(x2
1 + x2

2 + · · ·+ x2
n)
(

1
x2

1

+
1
x2

2

+ · · ·+ 1
x2

n

)
> n2 + 4 +

2
n(n− 1)

.

Gabriel Dospinescu

14. Prove that for any positive real numbers a, b, c, x, y, z such that

xy + yz + zx = 3,

a

b + c
(y + z) +

b

c + a
(x + z) +

c

a + b
(x + y) ≥ 3.

Titu Andreescu, Gabriel Dospinescu

15. Prove that for any positive real numbers a1, a2, . . . , an, x1,

x2, . . . , xn such that ∑
i≤i<j≤n

xixj =
(

n

2

)
,

the following inequality holds

a1

a2 + · · ·+ an
(x2 + · · ·+xn)+ · · ·+ an

a1 + · · ·+ an−1
(x1 + · · ·+xn−1) ≥ n.

Vasile Cartoaje, Gabriel Dospinescu
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EQUATIONS AND BEYOND

Real equations with multiple unknowns have in general infinitely

many solutions if they are solvable. In this case, an important task char-

acterizing the set of solutions by using parameters. We are going to

discuss two real equations and two parameterizations, but we will go

beyond, showing how a simple idea can generate lots of nice problems,

some of them really difficult.

We begin this discussion with a problem. It may seem unusual, but

this problem is in fact the introduction that leads to the other themes

in this discussion.

Example 1. Consider three real numbers a, b, c such that abc = 1

and write

x = a +
1
a
, y = b +

1
b
, z = c +

1
c

(1)

Find an algebraic relation between x, y, z, independent of a, b, c.

Of course, without any ideas, one would solve the equations from

(1) with respect to a, b, c and then substitute the results in the relation

abc = 1. But this is a mathematical crime! Here is a nice idea. To

generate a relation involving x, y, z, we compute the product

xyz =
(

a +
1
a

)(
b +

1
b

)(
c +

1
c

)

=
(

a2 +
1
a2

)
+
(

b2 +
1
b2

)
+
(

c2 +
1
c2

)
+ 2

= (x2 − 2) + (y2 − 2) + (z2 − 2) + 2.

Thus,

x2 + y2 + z2 − xyz = 4 (2)

and this is the answer to the problem.

Now, another question appears: is the converse true? Obviously not

(take for example the numbers (x, y, z) = (1, 1,−1)). But looking again
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at (1), we see that we must have min{|x|, |y|, |z|} ≥ 2. We will prove the

following result.

Example 2. Let x, y, z be real numbers with max{|x|, |y|, |z|} > 2.

Prove that there exist real numbers a, b, c with abc = 1 satisfying (1).

Whenever we have a condition of the form max{|x|, |y|, |z|} > 2, it is

better to make a choice. Here, let us take |x| > 2. This shows that there

exists a nonzero real number u such that x = u +
1
u

, (we have used here

the condition |x| > 2). Now, let us regard (2) as a second degree equation

with respect to z. Since this equation has real roots, the discriminant

must be nonnegative, which means that (x2 − 4)(y2 − 4) ≥ 0. But since

|x| > 2, we find that y2 ≥ 4 and so there exist a non-zero real number

v for which y = v +
1
v
. How do we find the corresponding z? Simply by

solving the second degree equation. We find two solutions:

z1 = uv +
1
uv

, z2 =
u

v
+

v

u

and now we are almost done. If z = uv+
1
uv

we take (a, b, c) =
(

u, v,
1
uv

)
and if z =

u

v
+

v

u
, then we take (a, b, c) =

(
1
u

, v,
u

v

)
. All the conditions

are satisfied and the problem is solved.

A direct consequence of the previous problem is the following:

If x, y, z > 0 are real numbers that verify (2), then there exist

α, β, χ ∈ R such that

x = 2ch(α), y = 2ch(β), z = 2ch(χ),

where ch : R → (0,∞), ch(x) =
ex + e−x

2
. Indeed, we write (1), in

which this time it is clear that a, b, c > 0 and we take α = ln a, β = ln b,

χ = ln c.

Inspired by the previous equation, let us consider another one

x2 + y2 + z2 + xyz = 4, (3)
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where x, y, z > 0. We will prove that the set of solutions of this equation

is the set of triples (2 cos A, 2 cos B, 2 cos C) where A,B, C are the angles

of an acute triangle. First, let us prove that all these triples are solutions.

This reduces to the identity

cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1.

This identity can be proved readily by using the sum-to-product

formulas, but here is a nice proof employing geometry and linear algebra.

We know that in any triangle we have the relations
a = c cos B + b cos C

b = a cos C + c cos A

c = b cos A + a cos B

which are simple consequences of the Law of Cosines. Now, let us con-

sider the system 
x− y cos C − z cos B = 0

−x cos C + y − z cos A = 0

−x cos B + y cos A− z = 0

From the above observation, it follows that this system has a non-

trivial solution, that is (a, b, c) and so we must have∣∣∣∣∣∣∣∣
1 − cos C − cos B

− cos C 1 − cos A

− cos B − cos A 1

∣∣∣∣∣∣∣∣ = 0,

which expanded gives

cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = 1.

For the converse, we see first that 0 < x, y, z < 2, hence there are

numbers A,B ∈
(
0,

π

2

)
such that x = 2 cos A, y = 2 cos B. Solving the

equation with respect to z and taking into account that z ∈ (0, 2) we
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obtain z = −2 cos(A + B). Thus we can take C = π − A − B and we

will have (x, y, z) = (2 cos A, 2 cos B, 2 cos C). All in all we have solved

the following problem.

Example 3. The positive real numbers x, y, z satisfy (3) if and only

if there exists an acute-angled triangle ABC such that

x = 2 cos A, y = 2 cos B, z = 2 cos C.

With the introduction and the easy problems over it is now time to

see some nice applications of the above results.

Example 4. Let x, y, z > 2 satisfying (2). We define the sequences

(an)n≥1, (bn)n≥1, (cn)n≥1 by

an+1 =
a2

n + x2 − 4
an−1

, bn+1 =
b2
n + y2 − 4

bn−1
, cn+1 =

c2
n + z2 − 4

cn−1
,

with a1 = x, b1 = y, c1 = z and a2 = x2 − 2, b2 = y2 − 2, c2 = z2 − 2.

Prove that for all n ≥ 1 the triple (an, bn, cn) also satisfies (2).

Solution. Let us write x = a+
1
a
, y = b+

1
b
, z = c+

1
c
, with abc = 1.

Then

a2 = a2 +
1
a2

, b2 = b2 +
1
b2

, c2 = c2 +
1
c2

.

So, a reasonable conjecture is that

(an, bn, cn) =
(

an +
1
an

, bn +
1
bn

, cn +
1
cn

)
.

Indeed, this follows by induction from(
an +

1
an

)2

+ a2 +
1
a2
− 2

an−1 +
1

an−1

= an+1 +
1

an+1

and two similar identities. We have established that

(an, bn, cn) =
(

an +
1
an

, bn +
1
bn

, cn +
1
cn

)
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But if abc = 1, then certainly anbncn = 1, which shows that indeed

the triple (an, bn, cn) satisfies (2).

The following problem is a nice characterization of the equation (2)

by polynomials and also teaches us some things about polynomials in

two or three variables.

Example 5. Find all polynomials f(x, y, z) with real coefficients

such that

f

(
a +

1
a
, b +

1
b
, c +

1
c

)
= 0

whenever abc = 1.

Gabriel Dospinescu

Solution. From the introduction, it is now clear that the polyno-

mials divisible by x2 + y2 + z2 − xyz − 4 are solutions to the problem.

But it is not obvious why any desired polynomial should be of this form.

To show this, we use the classical polynomial long division. There are

polynomials g(x, y, z), h(y, z), k(y, z) with real coefficients such that

f(x, y, z) = (x2 + y2 + z2 − xyz − 4)g(x, y, z) + xh(y, z) + k(y, z)

Using the hypothesis, we deduce that

0 =
(

a +
1
a

)
h

(
b +

1
b
, c +

1
c

)
+ k

(
b +

1
b
, c +

1
c

)
whenever abc = 1. Well, it seems that this is a dead end. Not exactly.

Now we take two numbers x, y such that min{|x|, |y|} > 2 and we write

x = b +
1
b
, y = c +

1
c

with b =
x +

√
x2 − 4
2

, c =
y +

√
y2 − 4
2

.

Then it is easy to compute a+
1
a
. It is exactly xy+

√
(x2 − 4)(y2 − 4).

So, we have found that

(xy +
√

(x2 − 4)(y2 − 4))h(x, y) + k(x, y) = 0

whenever min{|x|, |y|} > 2. And now? The last relation suggests that we

should prove that for each y with |y| > 2, the function x →
√

x2 − 4 is
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not rational, that is, there aren’t polynomials p, q such that
√

x2 − 4 =
p(x)
q(x)

. But this is easy because if such polynomials existed, than each

zero of x2− 4 should have even multiplicity, which is not the case. Con-

sequently, for each y with |y| > 2 we have h(x, y) = k(x, y) = 0 for all

x. But this means that h(x, y) = k(x, y) = 0 for all x, y, that is our

polynomial is divisible with x2 + y2 + z2 − xyz − 4.

O a different kind, the following problem and the featured solution

prove that sometimes an efficient substitution can help more than ten

complicated ideas.

Example 6. Let a, b, c > 0. Find all triples (x, y, z) of positive real

numbers such that{
x + y + z = a + b + c

a2x + b2y + c2z + abc = 4xyz

Titu Andreescu, IMO Shortlist, 1995

Solution. We try to use the information given by the second equa-

tion. This equation can be written as

a2

yz
+

b2

zx
+

c2

xy
+

abc

xyz
= 4

and we already recognize the relation

u2 + v2 + w2 + uvw = 4

where u =
a
√

yz
, v =

b√
zx

, w =
c

√
xy

. According to example 3, we can

find an acute-angled triangle ABC such that

u = 2 cos A, v = 2 cos B, w = 2 cos C.

We have made use of the second condition, so we use the first one

to deduce that

x + y + z = 2
√

xy cos C + 2
√

yz cos A + 2
√

zx cos B.
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Trying to solve this as a second degree equation in
√

x, we find the

discriminant

−4(
√

y sinC −
√

z sinB)2.

Because this discriminant is nonnegative, we infer that

√
y sinC =

√
z sinB and

√
x =

√
y cos C +

√
z cos B.

Combining the last two relations, we find that
√

x

sinA
=

√
y

sinB
=

√
z

sinC

Now we square these relations and we use the fact that

cos A =
a

2
√

yz
, cos B =

b

2
√

zx
, cos C =

c

2
√

xy
.

The conclusion is:

x =
b + c

2
, y =

c + a

2
, z =

a + b

2

and it is immediate to see that this triple satisfies both conditions. Hence

there is a unique triple that is solution to the given system. Notice that

the condition

x + y + z = 2
√

xy cos C + 2
√

yz cos A + 2
√

zx cos B

is the equality case in the lemma stated in the solution of the following

problem. This could be another possible solution of the problem.

We have discussed the following very difficult problem in the chapter

”An useful substitution”. We will see that example 3 helps us find a nice

geometric solution to this inequality.

Example 7. Prove that if the positive real numbers x, y, z satisfy

xy + yz + zx + xyz = 4, then

x + y + z ≥ xy + yz + zx.

India, 1998
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Solution. It is not difficult to observe that at first glance, the con-

dition xy + yz + zx + xyz = 4 it’s not the same as the equation (3). Let

us write the condition xy + yz + zx + xyz = 4 in the form

√
xy2 +

√
yz2 +

√
zx

2 +
√

xy · √yz ·
√

zx = 4.

Now, we can use the result from example 3 and we deduce the exis-

tence of an acute-angled triangle ABC such that
√

yz = 2 cos A
√

zx = 2 cos B
√

xy = 2 cos C

We solve the system and we find the triplet

(x, y, z) =
(

2 cos B cos C

cos A
,
2 cos A cos C

cos B
,
2 cos A cos B

cos C

)
Hence we need to prove that

2 cos B cos C

cos A
+

2 cos A cos C

cos B
+

2 cos A cos B

cos C
≥ 2(cos2 A+cos2 B+cos2 C).

This one is a hard inequality and it follows from a more general

result.

Lemma. If ABC is a triangle and x, y, z are arbitrary real numbers,

then

x2 + y2 + z2 ≥ 2yz cos A + 2zx cos B + 2xy cos C.

Proof of the lemma. Let us consider points P,Q,R on the lines

AB, BC, CA, respectively, such that AP = BQ = CR = 1 and P,Q,R

and do not lie on the sides of the triangle. Then we see that the inequality

is equivalent to

(x ·
−→
AP + y ·

−−→
BQ + z ·

−→
CR)2 ≥ 0,

which is obviously true.
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The lemma being proved, we just have to take

x =

√
2 cos B cos C

cos A
y =

√
2 cos A cos C

cos B
, z =

√
2 cos A cos B

cos C

in the above lemma and the problem will be solved.

But of course, this type of identities does not appear only in inequal-

ities. We are going to discuss two problems in which the identity is very

well masked.

Example 8. Find all continuous functions f : (0,∞) → (0,∞)

satisfying

f(x)f(y) = f(xy) + f

(
x

y

)
.

Sankt Petersburg

Solution. First of all, observe that by symmetry in x, y we must

have f

(
x

y

)
= f

(y

x

)
and so f(x) = f

(
1
x

)
. Next, by taking x = y = 1

we obtain f(1) = 2 and then f(x2) = f2(x)− 2. These relations should

now ring a bell! It seems that we are searching for something like f(x) =

xk +
1
xk

. We are right, but still far from the solution. Let’s make another

small step: proving that f(x) ≥ 2 for all x. Indeed, this is going to be

easy, since f(x2) = f2(x) − 2 implies that f(x) >
√

2 for all x. Thus,

f2(x) = f(x2) + 2 > 2 +
√

2. Repeating this argument, we find that for

all x we have

f(x) >

√
2 +

√
2 +

√
2 + . . . = 2

(the last equality being immediate for a beginner in analysis).

Yet, till now nothing related to our theme. Wrong! Let’s observe that

f(x2) + f(y2) = f(xy)f
(

x

y

)
for all x, y. Indeed, it suffices to write

x2 = xy
x

y
, y2 =

xy
x

y

.
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With this information, let us make one more step and write

f2(x) + f2(y)− 4 = f(x2) + f(y2) = f(xy)(f(x)f(y)− f(xy)).

We are now on the right track, since we find that

f2(x) + f2(y) + f2(xy) = f(x)f(y)f(xy) + 4.

Using also the fact that f(x) ≥ 2, we deduce the existence of a con-

tinuous function g : (0,∞) → [1,∞) such that f(x) = g(x) +
1

g(x)
. The

above relation implies of course that g(xy) = g(x)g(y). By considering

h(x) = ln g(ex), we obtain that h is a continuous solution of Cauchy’s

functional equation f(x+y) = f(x)+f(y), thus h(x) = kx for a certain

k. This shows that g(x) = xk and that our thoughts were right; these are

all solutions of the equation (the verification of the identity is immediate

for this class of functions).

And finally, an apparently inextricable recursive relation.

Example 9. Let (an)n≥0 be a non-decreasing sequence of positive

integers such that

a0 = a1 = 47 and a2
n−1 + a2

n + a2
n+1 − an−1anan+1 = 4 for all n ≥ 1.

Prove that 2 + an and 2 +
√

2 + an are perfect squares for all n ≥ 0.

Titu Andreescu

Solution. Using the idea from the chapter with real equations, we

write an = xn +
1
xn

, with xn > 1. The the given condition becomes

xn+1 = xnxn−1 (we have used here explicitly that xn > 1), which shows

that (lnxn)n≥0 is a Fibonacci-type sequence. Since x0 = x1, we deduce

that xn = xFn
0 , where F0 = F1 = 1, Fn+1 = Fn + Fn−1. Now, we have to

do more: who is x0? And the answer x0 =
47 +

√
472 − 1
2

won’t suffices.

Let us remark that (
√

x0 +
1
√

x0

)2

= 49
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from where we find that

√
x0 +

1
√

x0
= 7.

Similarly, we obtain that

4
√

x0 +
1

4
√

x0
= 3.

Solving the equation, we obtain

4
√

x0 =

(
1 +

√
5

2

)2

= λ2

that is x0 = λ8. And so we have found the general formula an = λ8Fn +

λ−8Fn . And now the problem becomes easy, since

an + 2 = (λ4Fn + λ−4Fn)2 and 2 +
√

2 + an = (λ2Fn + λ−2Fn)2.

All we are left to prove is that λ2k +
1

λ2k
∈ R for all k ∈ R. But this

isn’t difficult, since

λ2 +
1
λ2

∈ R, λ4 +
1
λ4

∈ R

and

λ2(k+1) +
1

λ2(k+1)
=
(

λ2 +
1
λ2

)(
λ2k +

1
λ2k

)
−
(

λ2(k−1) +
1

λ2(k−1)

)
.

Problems for training

1. Find all triples x, y, z of positive real numbers, solutions to the

system: {
x2 + y2 + z2 = xyz + 4

xy + yz + zx = 2(x + y + z)

2. Let x, y, z > 0 such that x2 + y2 + z2 + xyz = 4. Prove that√
(2− a)(2− b)
(2 + a)(2 + b)

+

√
(2− b)(2− c)
(2 + b)(2 + c)

+

√
(2− c)(2− a)
(2 + c)(2 + a)

= 1.

Cristinel Mortici, Romanian Inter-county Contest
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3. Prove that if a, b, c ≥ 0 satisfy the condition |a2+b2+c2−4| = abc,

then

(a− 2)(b− 2) + (b− 2)(c− 2) + (c− 2)(a− 2) ≥ 0.

Titu Andreescu, Gazeta Matematica

4. Find all triples (a, b, c) of positive real numbers, solutions to the

system {
a2 + b2 + c2 + abc = 4

a + b + c = 3

Cristinel Mortici, Romanian Inter-county Contest

5. Prove that in any triangle the following inequality holds(
sin

A

2
+ sin

B

2
+ sin

C

2

)2

≤ cos2
A

2
+ cos2

B

2
+ cos2

C

2
.

6. Let x, y, z > 0 such that xy + yz + zx + xyz = 4. Prove that

3
(

1√
x

+
1
√

y
+

1√
z

)2

≥ (x + 2)(y + 2)(z + 2).

Gabriel Dospinescu

7. Prove that in any acute-angled triangle the following inequality

holds(
cos A

cos B

)2

+
(

cos B

cos C

)2

+
(

cos C

cos A

)2

+ 8 cos A cos B cos C ≥ 4.

Titu Andreescu, MOSP 2000

8. Solve in positive integers the equation

(x + 2)(y + 2)(z + 2) = (x + y + z + 2)2.

Titu Andreescu

9. Let n > 4 be a given positive integer. Find all pairs of positive

integers (x, y) such that

xy − (x + y)2

n
= n− 4.
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Titu Andreescu

10. Let the sequence (an)n≥0, where a0 = a1 = 97 and an+1 =

an−1an +
√

(a2
n − 1)(a2

n−1 − 1) for all n ≥ 1. Prove that 2 +
√

2 + 2an is

a perfect square for all n ≥ 0.

Titu Andreescu

11. Find all triplets of positive integers (k, l,m) with sum 2002 and

for which the system 

x

y
+

y

x
= k

y

z
+

z

y
= l

z

x
+

x

y
= m

has real solutions.

Titu Andreescu, proposed for IMO 2002

12. Find all functions f : (0,∞) → (0,∞) with the following prop-

erties:

a) f(x)+f(y)+f(z)+f(xyz) = f(
√

xy)f(
√

yz)f(
√

zx) for all x, y, z;

b) if 1 ≤ x < y then f(x) < f(y).

Hojoo Lee, IMO Shortlist 2004

13. Prove that if a, b, c ≥ 2 satisfy the condition a2+b2+c2 = abc+4,

then

a + b + c + ac + bc ≥ 2
√

(a + b + c + 3)(a2 + b2 + c2 − 3).

Marian Tetiva

14. Prove that if a, b, c ≥ 0 satisfy a2 + b2 + c2 + abc = 4 then

0 ≤ ab + bc + ca− abc ≤ 2.

Titu Andreescu, USAMO 2001
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LOOK AT THE EXPONENT!

Most of the times, proving divisibility reduces to congruences and

the famous theorems from this field, such as Fermat, Euler, or Wil-

son. But what do we do when we have to prove for example that

lcm(a, b, c)2|lcm(a, b)·lcm(b, c)·lcm(c, a) for any positive integers a, b, c?

Then one thing is sure: the above methods fail. Yet, another smart idea

appears: if we have to prove that a|b, then it is enough to prove that

the exponent of any prime number in the decomposition of a is at least

the exponent of that prime number in the decomposition of b. For sim-

plicity, let us denote by vp(a) the exponent of the prime number p in

the decomposition of a. Of course, if p doesn’t divide a, then vp(a) = 0.

Also, it is easy to prove the following properties of vp(a):

1) min{vp(a), vp(b)} ≤ vp(a + b) ≤ max{vp(a), vp(b)}
2) vp(ab) = vp(a) + vp(b)

for any positive integer numbers a, b. Now, let us repeat the above idea

in terms of vp(a): we have a|b if and only if for any prime number p

we have vp(a) ≤ vp(b) and we have a = b if and only if for any prime

number p, vp(a) = vp(b).

Some other useful properties of vp(a) are:

3) vp(gcd(a1, a2, . . . , an)) = min{vp(a1), vp(a2), . . . , vp(an)},
4) vp(lcm(a1, a2, . . . , an)) = max{vp(a1), vp(a2), . . . , vp(an)} and

5) vp(n!) =
[
n

p

]
+
[

n

p2

]
+
[

n

p3

]
+· · · = n− sp(n)

p− 1
whenever p|n. Here,

sp(n) is the sum of digits of n when written in base b. Observe that 3)

and 4) are simple consequences of the definitions. Less straightforward is

5). This follows from the fact that there are
[
n

p

]
multiples of p,

[
n

p2

]
are

multiples of p2 and so on. The other equality is not difficult. Indeed, let

us write n = a0 +a1p+ · · ·+akp
k, where a0, a1, . . . , ak ∈ {0, 1, . . . , p−1}
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and ak 6= 0. Then[
n

p

]
+
[

n

p2

]
+· · · = a1+a2p+· · ·+akp

k−1+a2+a3p+· · ·+akp
k−2+· · ·+ak

and now using the formula

1 + p + · · ·+ pi =
pi+1 − 1
p− 1

,

we find exactly 5). Enough with the introduction, let’s see some concrete

results. We have chosen with intention the first problem (the classical

one) a very nasty one, so that the reader doesn’t think that all the above

formulas were for nothing and because it offers us the opportunity to

prove a very nice inequality. There are hundreds of variants of it in all

contests around the world and in all elementary magazines. Let us see.

Example 1. Prove that
(3a + 3b)!(2a)!(3b)!(2b)!

(2a + 3b)!(a + 2b)!(a + b)!a!(b!)2
∈ Z for

any positive integers a, b.

Richard Askey, AMM 6514

Solution. First, let us clearify something. When we write[
n

p

]
+
[

n

p2

]
+
[

n

p3

]
+ . . . ,

we write in fact
∑
k≥1

[
n

pk

]
and this sum has clearly a finite number of

non-zero terms. Now, let us take a prime p and let us apply formula 5),

as well as the first observations. We find that

vp((3a+3b)!(2a)!(3b)!(2b)!) =
∑
k≥1

([
3a + 3b

pk

]
+
[
2a

pk

]
+
[
3b

pk

]
+
[
2b

pk

])
and also

vp = ((2a + 3b)!(a + 2b)!(a + b)!a!(b!)2)

=
∑
k≥1

([
2a + 3b

pk

]
+
[
a + 2b

pk

]
+
[
a + b

pk

]
+
[

a

pk

]
+ 2

[
b

pk

])
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Of course, it is enough to prove that for each k ≥ 1 the term cor-

responding to k in the first sum is greater than or equal to the term

corresponding to k in the second sum. With the substitution x =
a

pk
,

y =
b

pk
, we have to prove that for any nonnegative real numbers x, y we

have

[3x + 3y] + [2x] + [3y] + [2y] ≥ [2x + 3y] + [x + 2y] + [x + y] + [x] + 2[y].

This isn’t easy, but with another useful idea the inequality will be-

come easy. The idea is that

[3x + 3y] = 3[x] + 3[y] + [3{x}+ 3{y}]

and similar relations for the other terms of the inequality. After this

operation, we see that it suffices to prove the inequality only for 0 ≤
x, y < 1. Why is the new inequality easy? Because we can easily compute

all terms, after splitting in some cases, so that to see when [2{x}], [3{y}],
[2{y}] are 0, 1 or 2.

We won’t continue studying these cases, since another beautiful

problem is waiting.

Example 2. Let a, b be positive integers such that a|b2, b3|a4, a5|b6,

b7|a8, . . . . Prove that a = b.

Solution. Let us take a prime p and try to prove that vp(a) = vp(b).

We see that the hypothesis a|b2, b3|a4, a5|b6, b7|a8, . . . is the same as

a4n+1|b4n+2 and b4n+3|a4n+4 for all natural number n. But the relation

a4n+1|b4n+2 can be interpreted as (4n + 1)vp(a) ≤ (4n + 2)vp(b) for all

n, that is

vp(a) ≤ lim
n→∞

4n + 2
4n + 1

vp(b) = vp(b).

Similarly, the condition b4n+3|a4n+4 implies vp(a) ≥ vp(b) and so

vp(a) = vp(b). The conclusion follows: a = b.
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We have mentioned in the beginning of the discussion a nice and

easy problem, so probably it’s time to solve it, although for sure the

reader has already done this.

Example 3. Prove that lcm(a, b, c)2|lcm(a, b) · lcm(b, c) · lcm(c, a)

for any positive integers a, b, c.

Solution. Let p an arbitrary prime number. We have

vp(lcm(a, b, c)2) = 2 max{x, y, z}

and

vp(lcm(a, b) · lcm(b, c) · lcm(c, a)) = max{x, y}+max{y, z}+max{z, x},

where x = vp(a), y = vp(b), z = vp(c). So, we need to prove that

max{x, y}+ max{y, z}+ max{z, x} ≥ 2 max{x, y, z}

for any nonnegative integers x, y, z. But this is easy, since we may assume

that x ≥ y ≥ z (the symmetry allows us this supposition) and the

inequality becomes 2x + y ≥ 2x, obviously true.

It is time for some difficult problems, which are all based on the

observations from the beginning of the discussion.

Example 4. Prove that there exists a constant c such that for any

positive integers a, b, n that verify a! · b!|n! we have a + b < n + c lnn.

Paul Erdos

Solution. This time the other formula for vp(n!) is useful. Of course,

there is no reasonable estimation of this constant, so we should better

see what happens if a! · b!|n!. Then v2(a!) + v2(b!) ≤ v2(n!), which can

be translated as a − s2(a) + b − s2(b) ≤ n − s2(n) < n. So, we have

found almost exactly what we needed: a + b < n + s2(a) + s2(b). Now,

we need another observation: the sum of digits of a number A when

written in binary is at most the number of digits of A in base 2, which

is 1 + [log2 A] (this follows from the fact that 2k−1 ≤ A < 2k, where
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k is the number of digits of A in base 2). So, we have the estimations

a + b < n + s2(a) + s2(b) ≤ n + 2 + log2 ab ≤ n + 2 + 2 log2 n (since we

have of course a, b ≤ n). And now the conclusion is immediate.

The following problem appeared in Kvant as a hard problem. It took

quite a long time before an olympic found an extraordinary solution. We

shall not present his solution; but another one, even easier.

Example 5. Is there an infinite set of positive integers such that

no matter how we choose some elements of this set, their sum is not an

integer power of exponent at least 2?

Kvant

Solution. Let us take A = {2n · 3n+1|n ≥ 1} If we consider some

different numbers from this set, their sum will be of the form 2x ·3x+1 ·y,

where (y, 6) = 1. This is surely not a power of exponent at least 2, since

otherwise the exponent should divide both x and x + 1. Thus this set is

actually a good choice.

The following problem shows the beauty of elementary number-

theory. It combines diverse ideas and techniques and the result is at

least beautiful. This one is also a classic problem, that appeared in lots

of mathematics competitions.

Example 6. Prove that for any natural number n, n! is a divisor of

n−1∏
k=0

(2n − 2k).

Solution. So, let us take a prime number p. Of course, for the ar-

gument to be non-trivial, we take p ≤ n (otherwise doesn’t divide n!).

First, let us see what happens with p = 2. We have

v2(n!) = n− s2(n) ≤ n− 1
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and also

v2

(
n−1∏
k=0

(2n − 2k)

)
=

n−1∑
k=0

v2(2n − 2k) ≥ n− 1

(since 2n− 2k is even for k ≥ 1), so we are done with this case. Now, let

us assume that p > 2. We have p|2p−1− 1 from Fermat’s theorem, so we

also have p|2k(p−1) − 1 for all k ≥ 1. Now,

n−1∏
k=0

(2n − 2k) = 2
n(n−1)

2

n∏
k=1

(2k − 1)

and so, from the above remarks we infer that

v2

(
n−1∏
k=0

(2n − 2k)

)
=

n∑
k=1

v2(2k − 1)

≥
∑

1≤k(p−1)≤n

v2(2k(p−1) − 1) ≥ card{k|1 ≤ k(p− 1) ≤ n}

Since

card{k|1 ≤ k(p− 1) ≤ n} =
[

n

p− 1

]
,

we have found that

v2

(
n−1∏
k=0

(2n − 2k)

)
≥
[

n

p− 1

]
.

But we know that

v2(n!) =
n− sp(n)

p− 1
≤ n− 1

p− 1
<

n

p− 1

and since v2(n!) ∈ R, we must have

v2(n!) ≤
[

n

p− 1

]
.

From these two inequalities, we conclude that

v2

(
n−1∏
k=0

(2n − 2k)

)
≥ v2(n!)

and now the problem is solved.
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Diophantine equations can also be solved using the methods em-

ployed in this topic. Here is a difficult one, given in a russian olympiad.

Example 7. Prove that the equation

1
10n

=
1

n1!
+

1
n2!

+ · · ·+ 1
nk!

does not have integer solutions such that 1 ≤ n1 < n2 < · · · < nk.

Tuymaada Olimpiad

Solution. Suppose we have found a solution of the equation and let

us consider

P = n1!n2! . . . nk!.

We have

10n((n1 + 1) . . . (nk − 1)nk + · · ·+ (nk−1 + 1) . . . (nk − 1)nk + 1) = nk!

which shows that nk divides 10n. Let us write nk = 2x · 5y. First of

all, suppose that x, y are positive. Thus, (n1 + 1) . . . (nk − 1)nk + · · ·+
(nk−1 + 1) . . . (nk − 1)nk + 1 is relatively prime with 10 and it follows

that v2(nk!) = v5(nk!). This implies of course that
[nk

2j

]
=
[nk

5j

]
for all

j (because we clearly have
[nk

2j

]
>
[nk

5j

]
) and so nk ≤ 3. A verification

by hand shows that there is no solution in this case.

Next, suppose that y = 0. Then (n1+1) . . . (nk−1)nk + · · ·+(nk−1+

1) . . . (nk − 1)nk + 1 is odd and thus v2(nk!) = n ≤ v5(nk!). Again this

implies v2(nk!) = v5(nk!) and we have seen that this gives no solution.

So, actually x = 0. A crucial observation is that if nk > nk−1 + 1,

then (n1 + 1) . . . (nk − 1)nk + · · ·+ (nk−1 + 1) . . . (nk − 1)nk + 1 is again

odd and thus we find again that v2(nk!) = n ≤ v5(nk!), impossible. So,

nk = nk−1 +1. But then, taking into account that nk is a power of 5, we

deduce that (n1 +1) . . . (nk− 1)nk + · · ·+(nk−1 +1) . . . (nk− 1)nk +1 is

congruent to 2 modulo 4 and thus v2(nk!) = n+1 ≤ v5(nk!)+1. It follows

that
[nk

2

]
≤ 1 +

[nk

5

]
and thus nk ≤ 6. Since nk is a power of 5, we
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find that nk = 5, nk−1 = and a quick research of all possibilities shows

that there are no solutions. Thus, the given equation has no solution in

natural numbers.

A tricky APMO problem asked once upon a time to prove there is a

number 2 < n < 2000 such that n|2n + 2. We will let to the reader the

job to verify that 2 · 11 · 43 is a solution (and especially the job to find

how we arrived at this number) and also the exercise to prove that there

are actually infinitely many such numbers. Yet... small verifications show

that all such numbers are even. Proving this turns out to be a difficult

problem and this was proved for the first time by Sierpinski.

Note. After the quadratic reciprocity law topic, it will be proved that

2 11 43 is a solution of the problem.

Example 8. Prove that for any n > 1 we cannot have n|2n−1 + 1.

Solution. Although very short, the proof is tricky. Let n =
s∏

i=1

pki
i

where p1 < · · · < ps are prime numbers. The idea is to look at v2(pi−1).

Choose that pi which minimizes this quantity and write pi = 1 + 2rimi

with mi odd. Then of course we have n ≡ 1 (mod 2mi). Hence we can

write n − 1 = 2mt. We have 22mt ≡ −1 (mod pi) thus we surely have

−1 ≡ 22mtmi ≡ 2(pi−1)t ≡ 1 (mod pi) (the last congruence being derived

from Fermat’s theorem). Thus pi = 2, which is clearly impossible.

We continue with a very nice and hard problem, in which the idea of

looking at the exponents really saves us. This problem seemed to appear

for the first time in AMM , proposed by Armond E. Spencer. In the last

years, it appeared in various contests.

Example 9. Prove that for any integers a1, a2, . . . , an the number∏
1≤i<j≤n

ai − aj

i− j
is an integer.

Armond Spencer, AMM E 2637
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Solution. This time, we consider a prime number p and we prove

that for each k ≥ 1, there are more numbers divisible by pk in the se-

quence of differences (ai−aj)1≤i<j≤n than in the sequence (i−j)1≤i<j≤n.

Since

vp

 ∏
1≤i<j≤n

(ai − aj)

 =
∑
k≥1

Npk

 ∏
1≤i<j≤n

(ai − aj)



(here Nx

∏
y∈A

y

 is the number of terms from the sequence A that are

multiples of x) and

vp

 ∏
1≤i<j≤n

(i− j)

 =
∑
k≥1

Npk

 ∏
1≤i<j≤n

(i− j)

 ,

the problem will be solved if we prove our claim. Now, let us fix k ≥ 1

and let us suppose that there are exactly bi indices j ∈ {1, 2, . . . , n} such

that aj ≡ i (mod pk), for each i ∈ {0, 1, . . . , pk − 1}. Then we have

Npk

 ∏
1≤i<j≤n

(ai − aj)

 =
pk−1∑
i=0

(
bi

2

)
.

We see that if ai = i, then bi =
[
n + i

pk

]
(there are

[
n + i

pk

]
numbers

congruent with i (mod p) between 1 and n; any of them is of the form

i + jp, with 0 ≤ j ≤ n− i

p
, of course, if i = 0 we have 1 ≤ j ≤ n

p
). So,

Npk

 ∏
1≤i<j≤n

(i− j)

 =
pk−1∑
i=0

 [
ni

pk

]
2


and it suffices to prove that

pk−1∑
i=0

(
bi

2

)
≥

pk−1∑
i=0

 [
ni

pk

]
2

 .
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Now, observe that we are practically asked to find the minimal

value of
pk−1∑
i=0

(
xi

2

)
, when

pk−1∑
i=0

xi = n (it is clear that
pk−1∑
i=0

bi = n =

pk−1∑
i=0

[
ni

pk

]
from the definition of bi). For this, let us suppose that

x1 ≤ x2 ≤ · · · ≤ xpk−1 is the n-tuple which attains the minimal

value (such a n-tuple exists since the equation
pk−1∑
i=0

xi = n has a finite

number of solutions). If xpk−1 > x0 + 1, then we consider the n-tuple

(x0 + 1, x1, . . . , xpk−2, xpk−1 − 1) which has the sum of the components

n, but for which(
x0 + 1

2

)
+
(

x1

2

)
+ · · ·+

(
xpk−2

2

)
+
(

xpk−1 − 1
2

)

<

(
x0

2

)
+
(

x1

2

)
+ · · ·+

(
xpk−2

2

)
+
(

xpk−1

2

)
.

The last inequality is true, since it is equivalent with xpk−1 > x0+1, so it

is true. But this contradicts the minimality of (x0, x1, . . . , x2, . . . , xpk−1).

So, we must have xpk−1 ≤ x0 + 1 and from here it follows that

xi ∈ {x0, x0 + 1} for all i ∈ {0, 1, 2, . . . , pk − 1}. Thus, there is

j ∈ {0, 1, 2, . . . , pk − 1} such that x0 = x1 = · · · = xj and xj+1 =

xj+2 = · · · = xpk−1 = x0 + 1. This easily implies that the minimal

n-tuple is in fact
([

n + i

pk

])
i=0,pk−1

and the problem is solved.

Finally, it is time for a challenge.

Example 10. Let a, b two different positive rational numbers such

that for infinitely many numbers n, an − bn is integer. Then prove that

a, b are also integers.

Gabriel Dospinescu, Mathlinks Contest

Solution. Let us start by writing a =
x

z
, b =

y

z
, where x, y, z are

different natural numbers relatively prime. We know thus that zn|xn−yn
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for infinitely many numbers n. Let M be the set of those numbers n.

Now, assume that z > 1 and take p a prime divisor of z. Assuming that

p does not divide x, it obviously follows that it can’t divide y. We have

thus two cases:

i) If p = 2, then let n such that 2n|xn − yn and write n = 2unvn,

where vn is odd. From the identity

x2unvn − y2unvn = (xvn − yvn)(xvn + yvn) . . . (x2un−1vn − y2un−1vn)

it follows that

v2(xn − yn) = v2(xvn − yvn) +
un−1∑
k=0

v2(x2kvn + y2kvn).

But xvn−1 + xvn−2 + · · · + xyvn−2 + yvn−1 is obviously odd (since

vn, x, y are odd), hence

v2(xvn − yvn) = v2(x− y).

Similarly, we can prove that

v2(xvn + yvn) = v2(x + y).

Since for k > 0 we have

x2kvn + y2kvn ≡ 2 (mod 4),

we finally deduce that

2unvn ≤ v2(xn − yn) ≤ v2(x + y) + v2(x− y) + un − 1 (∗)

Consequently, (2un)n∈M is bounded, a simple reason being the in-

equality 2un ≤ v2(x+ y)+ v2(x− y)+un− 1. Hence (un)n∈M takes only

a finite number of values and from (∗) it follows that (vn)n∈M also takes

a finite number of values, that is M is finite.

ii) If p is odd, then let d the smallest positive integer k such that

p|xk−yk. Then for any n in M we will have p|xn−yn. Let x = tu, y = tv,
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where (u, v) = 1. Obviously, tuv is not a multiple of p. It follows then

that p|(ud−vd, un−vn) = u(n,d)−v(n,d)|x(n,d)−y(n,d) and by the choice of

d, we must have d|n. Take now n in M and write it in the form n = md,

with m natural. Let A = xd, B = yd. Then pm|pn|xn − yn = Am − Bm

and this happens for infinitely many numbers m. Moreover, p|A − B.

Let R the infinite set of those numbers m. For any m in R we have

m ≤ vp(Am − Bm). Now, let us write m = pij, where j is relatively

prime with p. We clearly have

Am −Bm = (Aj −Bj)
Apj −Bpj

Aj −Bj
. . .

Ajpi −Bjpi

Ajpi−1 −Bjpi−1

(we have assumed that i > 1, since the final conclusion will be obvi-

ous in any other case). An essential observation is that we cannot have

p2| Ajpk −Bjpk

Ajpk−1 −Bjpk−1 for a certain k > 1. Indeed, otherwise we would have

p2|Ajpk − Bjpk ⇒ p2|Apj − Bpj (Euler’s theorem). Yet, we also have

p2|Ajpk−1(p−1) + Ajpk−1(p−2)Bjpk−1
+ · · ·+ bjpk−1(p−1). From p2|Aj − Bj

we have

Ajpk−1(p−1) + Ajpk−1(p−2)Bjpk−1
+ · · ·+ Bjpk−1(p−1)

≡ pAjpk−1(p−1) (mod p2),

so we should have p|A, that is p|x, false.

Let us prove now that we cannot have p2|A
pj −Bpj

Aj −Bj
. Indeed, oth-

erwise (since p|A − B), we can write Aj = Bj + wp and then a simple

computation using Newton’s binomial formula shows that

Apj −Bpj

Aj −Bj
= Aj(p−1) + Aj(p−2) + · · ·+ Bj(p−1)

≡ pBj(p−1) +
p− 1

2
Bj(p−2)p2 ≡ pBj(p−1) (mod p2)

and thus it would follow that p|B, that is p|y, false.
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After all, we have shown that in this case we must have

m ≤ vp(Am −Bm) ≤ vp(Aj −Bj) + i.

Using again the fact that A ≡ B (mod p), we infer that

Aj−1 + Aj−2B + · · ·+ Bj−1 ≡ jAp−1 ≡ j (mod p),

which shows that

vp(Aj −Bj) = vp(A−B).

Thus, for infinitely many numbers m we have

m ≤ vp(A−B) + [log2 m],

which is clearly impossible.

Thus, we must have p|x and p|y, contradiction with the fact that

x, y, z are relatively prime. This shows that z = 1 and a, b are integers.

Problems for training

1. Prove the identity

lcm(a, b, c)2

lcm(a, b) · lcm(b, c) · lcm(c, a)
=

gcd(a, b, c)2

gcd(a, b) · gcd(b, c) · gcd(c, a)

for any positive integers a, b, c.

USAMO, 1972

2. Let a, b, c, d be positive integers such that ab = cd. Prove that

gcd(a, c) · gcd(a, d) = a · gcd(a, b, c, d).

Polish Mathematical Olympiad

3. Let a1, a2, . . . , ak, b1, b2, . . . , bk be positive integers such that

gcd(ai, bi) = 1 for all i ∈ {1, 2, . . . , k}. Let m− lcm[b1, b2, . . . , bk]. Prove

that

gcd

(
a1m1

b1
,
a2m2

b2
, . . . ,

akmk

bk

)
= gcd(a1, a2, . . . , ak).

IMO Shortlist 1974
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4. Let n such that 2n−2005|n!. Prove that this number has at most

2005 non-zero digits when written in base 2.

5. Prove that for any natural number n we have

(n2)!(
n

n

)(
n + 1

n

)
. . .

(
2n− 1

n

)
n!n

∈ R.

R.M Grassl, T. Porter, AMM E 3123

6. Prove the identity

(n + 1)lcmk=0,n

(
n

k

)
= lcm(1, 2, . . . , n + 1)

for any positive integer n.

Peter L Montgomery, AMM E 2686

7. Let 0 < a1 < · · · < an be integers. Find the maximal value of the

number m for which we can find the integers 0 < b1 < · · · < bm such

that
n∑

k=1

2ak =
m∑

k−1

bk and
n∏

k=1

(2ak)! =
m∏

k=1

bk!.

Gabriel Dospinescu

8. Prove that the least common multiple of the numbers 1, 2, . . . , n

equals the least common multiple of the numbers
(

n

1

)
,

(
n

2

)
, . . . ,

(
n

n

)
if and only if n + 1 is a prime.

Laurentiu Panaitopol, TST 1990 Romania

9. Prove that for any n ∈ N we have n!(n + 1)!(n + 2)!|(3n)!.

Komal

10. Prove that the product of the numbers between 21917 + 1 and

21991 − 1 is not a perfect square.

Tournament of the Towns, 1991

11. Show that if n is a positive integer and a and b are integers, then

n! divides a(a + b)(a + 2b) . . . (a + (n− 1)b)bn− 1.
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IMO Shortlist, 1985

12. Prove that k!k
2+k+1 divides (k3)!.

Poland Olympiad

13. Let x, y be relatively prime different natural numbers. Prove that

for infinitely many primes p the exponent of p in xp−1 − yp−1 is odd.

AMM

14. Let a1, . . . , an > 0 such that whenever k is a prime number of a

power of a prime number, we have{a1

k

}
+ · · ·+

{an

k

}
< 1.

Prove that there is a unique index i ∈ {1, 2, . . . , n} such that a1 +

· · ·+ an < 1 + [ai].

16. Find the exponent of 2 in the decomposition of the number(
2n+1

2n

)
−
(

2n

2n−1

)
.

AMM

17. Prove that (xn)n≥1 the exponent of 2 in the decomposition of

the numerator of
2
1

+
22

2
+ · · · + 2n

n
, goes to infinity as n → ∞. Even

more, prove that x2n ≥ 2n − n + 1 (hint: try to prove first the identity
2
1

+
22

2
+ · · ·+ 2n

n
=

2n

n

n−1∑
k=0

1(
n− 1

k

)).

Adapted after a Kvant problem

18. Prove that the product of at most 25 consecutive integers is not

a square.

Narumi’s theorem
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PRIMES AND SQUARES

The study of the properties of the prime numbers is so well developed

(yet, many old conjectures and open questions wait their solution), that

some properties have become classical and need to be known. In this unit,

we will try to present a unitary view over the properties of some classes of

primes and also some classical results related to representations as sum

of two squares. These things are not new, but they must be included

in the mathematical culture of a serious problem-solver. Yet, in the end

of the unit, we will discuss as usual some non-classical and surprising

problems. So, don’t skip this unit!

Since we will use some facts several times in this paper, we prefer to

make some notations before discussing the problems. So, we will consider

A,B the sets of all prime numbers of the form 4k + 1 and 4k + 3,

respectively. Also, let C be the set of all numbers which can be written as

the sum of two perfect squares. Our purpose is to present some classical

things related to A,B, C. The most spectacular property of the set A

is surely the fact that any element is the sum of two squares of positive

integers. This is not a trivial property and we will see a beautiful proof

for this theorem of Fermat, which is far from easy.

Example 1. Prove that A is a subset of C.

Solution. Thus, we need to prove that any prime number of the form

4k+1 is the sum of two squares. We will use a very nice theorem of Thue,

which says that if n is a positive integer and a is relatively prime with

n, then there exist integers 0 < x, y ≤
√

n such that xa ≡ ±y (mod n)

for a suitable choice of the signs + and −. The proof is simple, but the

theorem itself is a diamond. Indeed, let us consider all the pairs xa− y,

with 0 ≤ x, y ≤ [
√

n]. So, we have a list of ([
√

n] + 1)2 > n numbers and

it follows that two numbers among them give the same remainder when

divided by n, let them be ax1− y1 and ax2− y2. It is not difficult to see
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that we may assume that x1 > x2 (we certainly cannot have x1 = x2 or

y1 = y2). If we take x = x1 − x2, y = |y1 − y2|, all the conditions are

satisfied and the theorem is proved.

We will use now Wilson’s theorem to find an integer n such that

p|n2 + 1. Indeed, let us write p = 4k + 1 and observe that we can take

n = (2k)!. Why? Because from Wilson’s theorem we have

−1 ≡ (p− 1)! (mod p) ≡ 1 · 2 . . .

(
p− 1

2

)(
p− p− 1

2

)
. . . (p− 1)

≡ (−1)
p−1
2

(
p− 1

2

)
!2 ≡ (2k)!2 (mod p)

and the claim is proved. Now, since p|n2 + 1, it is clear that p and n

are relatively prime. Hence we can apply Thue’s theorem and we find

the existence of positive integers 0 < x, y <
√

p (since
√

p 6∈ R) such

that p|n2x2 − y2. Because p|n2 + 1, we find that p|x2 + y2 and because

0 < x, y <
√

p, we conclude that we have in fact p = x2 + y2. The

theorem is proved.

Now, it is time now to study some properties of the set B. Since they

are easier, we will discuss them all in a single example.

Example 2. Let p ∈ B and suppose that x, y are integers such that

p|x2 + y2. Then p|(x, y). Consequently, any number of the form n2 + 1

has only prime factors that belong to A or are equal to 2. Conclude that

A is infinite and then that B is infinite.

Solution. Let us focus on the first question. Suppose that p|(x, y)

is not true. Then, it is obvious that xy is not a multiple of p. Because

p|x2 + y2, we can write x2 ≡ −y2 (mod p). Combining this with the

observation that (x, p) = (y, p) = 1 and with Fermat’s theorem, we

find that 1 ≡ xp−1 ≡ (−1)
p−1
2 ≡ (−1)

p−1
2 ≡ −1 (mod p), which is

clearly impossible. This settles the first question. The second one follows

clearly from the first one. Now, it remains to prove the third assertion.
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Proving that B is infinite is almost identical with the proof that there

exist infinitely many primes. Indeed, suppose that p1, p2, . . . , pn are all

the elements of B greater than 3 and consider the odd number N =

4p1p2 . . . pn + 3. Because N ≡ 3 (mod 4), N must have a prime factor

that belongs to B. But since pi is not a divisor of N for any i = 1, n

the contradiction is reached and thus B is infinite. In the same manner

we can prove that A is infinite, but this time we must use the second

question. Indeed, we consider this time the number M = (q1q2 . . . qm)2+

1, where q1, q2, . . . , qm are all the elements of A and then simply apply

the result from the second question. The conclusion is plain.

It is not difficult to characterize the elements of the set C. A number

is a sum of two squares if and only if any prime factor of it that also

belongs to B appears at an even exponent in the decomposition of that

number. The proof is just a consequence of the first examples and we

will not insist. Having presented some basic results that we will use in

this unit, it is time to see how many applications these two examples

have. An easy consequence of the previous observations is the following.

As a simple application of the first example, we consider the following

problem, which is surely easy for someone who knows Fermat’s theorem

regarding the elements of A and very difficult otherwise.

Example 3. Find the number of integers x ∈ {−1997, . . . , 1997} for

which 1997|x2 + (x + 1)2.

India, 1998

Solution. We know that any congruence of the second degree re-

duces to the congruence x2 ≡ a (mod p). So, let us proceed and reduce

the given congruence to this special form. This is not difficult, since

x2 +(x+1)2 ≡ 0 (mod 1997) is of course equivalent to 2x2 +2x+1 ≡ 0

(mod 1997), which in turn becomes (2x + 1)2 + 1 ≡ 0 (mod 1997).

Since 1997 ∈ A, the congruence n2 ≡ −1 (mod 1997) surely has at
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least a solution. More precisely, there are exactly two solutions that

belong to {1, 2, . . . , 1996} because if n0 is a solution, so is 1997 − n0

and it is clear that it has at most two non-congruent solutions mod

1997. Because (2, 1997) = 1, the function x → 2x + 1 is a permutation

of R1997 and so the initial congruence has exactly two solutions with

x ∈ {1, 2, . . . , 1996}. In a similar way, we find that there are exactly two

solutions with x ∈ {−1997,−1996, . . . ,−1}. Therefore there are exactly

four numbers x ∈ {−1997, . . . , 1997} such that 1997|x2 + (x + 1)2.

From a previous observation, we know that the condition that a

number is a sum of two squares is quite restrictive. This suggests that

the set X is quite RARA. This conclusion can be translated in the

following nice problem.

Example 4. Prove that C doesn’t have bounded gaps, that is there

are arbitrarily long sequences of integers, no term of which can be written

as the sum of two perfect squares.

AMM

Solution. The statement of the problem suggests using the Chinese

Remainder Theorem, but here the main idea is to use the complete

characterization of the set C, that we have just discussed: C = {n ∈
R| if p|n and p ∈ B, then vp(n) ∈ 2R}. Hence we know what we have

to do. We will take long sequences of consecutive integers, each of them

having a prime factor that belongs to B and has exponent 1. More

precisely, we take different elements of B, let them p1, p2, . . . , pn (we can

take as many as we need, since B is infinite) and then we look for a
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solution of the system of congruences
x ≡ p1 − 1 (mod p2

1)

x ≡ p2 − 2 (mod p2
2)

. . .

x ≡ pn − n (mod p2
n)

The existence of such a solution follows from the Chinese Remainder

Theorem. Thus, the numbers x+1, x+2, . . . , x+n cannot be written as

the sum of two perfect squares, since pi|xi, but p2
i does not divide x + i.

Since n is as large as we want, the conclusion follows.

The Diophantine equation x(x + 1)(x + 2) . . . (x + n) = yk has been

extensively studied by many mathematicians and great results have been

obtained. But these results are very difficult to prove and we prefer to

present a related problem, with a nice flavor of elementary mathematics.

Example 5. Prove that a set of p− 1 consecutive positive integers,

where p ∈ B, cannot be partitioned into two subsets, each having the

same product of the elements.

Solution. Let us suppose that the positive integers x + 1, x +

2, . . . , x + p − 1 have been partitioned into two classes X, Y , each of

them having the same product of the elements. If at least one of them is

a multiple of p, then there must be another one divisible by p (since in

this case both the products of elements from X and Y must be multi-

ples of p), which is clearly impossible. Thus, none of these numbers is a

multiple of p, which means that the set of remainders of these numbers

when divided by p is exactly 1, 2, . . . , p− 1. Also, from the hypothesis it

follows that there exists a positive integer n such that

(x + 1)(x + 2) . . . (x + p− 1) = n2.

Hence n2 ≡ 1 · 2(p − 1) ≡ −1 (mod p), the last congruence being

true by Wilson’s theorem. But from the second example we know that
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the congruence n2 ≡ −1 (mod p) is impossible for p ∈ B and this is the

needed contradiction.

The results stated in the second example are an useful tool in solving

non-standard Diophantine equations. The technique is better explained

in the following two examples.

Example 6. Prove that the equation x4 = y2 +z2 +4 does not have

integer solutions.

Reid Barton, Rookie Contest, 1999

Solution. Practically, we have to show that x4 − 4 does not belong

to C. Hence we need to find an element of B that has an odd exponent

in the decomposition of x4−4. The first case is when x is odd. Using the

factorization x4−4 = (x2−2)(x2+2) and the observation that x2+2 ≡ 3

(mod 4), we deduce that there exists p ∈ B such that vp(x2 + 2) is odd.

But since p cannot divide x2− 2 (otherwise p|x2 + 2− (x2− 2), which is

not the case), we conclude that vp(x4− 4) is odd and so x4− 4 does not

belong to C. We have thus shown that in any solution of the equation x

is even, let us say x = 2k. Then, we must also have 4k4 − 1 ∈ C, which

is clearly impossible since 4k4 − 1 ≡ 3 (mod 4) and thus 4k4 − 1 has

a prime factor that belongs to B and has odd exponent. Moreover, it

worth noting that the equation x2+y2 = 4k+3 can be solved directly, by

working modulo 4. We leave to the reader the details, which are trivial.

The following problem is much more difficult, but the basic idea is

the same. Yet, the details are not so obvious and, most important, it

is not clear how to begin. It has become a classical problem due to its

beauty and difficulty.

Example 7. Let p ∈ B and suppose that x, y, z, t are integers such

that x2p+y2p+z2p = t2p. Prove that at least one of the numbers x, y, z, t

is a multiple of p.
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Barry Powel, AMM

Solution. First of all, we observe that it is enough to assume that

x, y, z, t are relatively prime. Next, we prove that t is odd. Supposing

the contrary, we obtain that x2p + y2p + z2p ≡ 0 (mod 4). Since a2

(mod 4) ∈ {0, 1}, the latter implies that x, y, z are even, contradicting

the assumption that (x, y, z, t) = 1. Hence t is odd. This implies that

at least one of the numbers x, y, z is odd. Suppose that it is z. Now,

another step is required. We write the equation in the form

x2p + y2p =
t2p − z2p

t2 − z2
(t2 − z2)

and we look for a prime number q ∈ B with an odd exponent in the

decomposition of a factor that appears in the right-hand side. The best

candidate for this factor seems to be

t2p − z2p

t2 − z2
= (t2)p−1 + (t2)p−2z2 + · · ·+ (z2)p−1,

which is congruent to 3 (mod 4). This follows from the hypothesis p ∈ B

and the fact that a2 ≡ 1 (mod 4) for any odd number a. Thus, there

exists q ∈ B such that vq

(
t2p − z2p

t2 − z2

)
is odd. Since x2p + y2p ∈ C, it

follows that vq(x2p + y2p) is even and so vq(t2− z2) is odd. In particular

q|t2−z2 and, because q|(t2)p−1+(t2)p−2z2+· · ·+(z2)p−1, we deduce that

q|pt2(p−1). If q 6= p, then q|t, hence q|z and also q|x2p + y2p. Because q ∈
B, we infer that q|(x, y, z, t) = 1, which is clearly impossible. Therefore

q = p and so p|x2p + y2p. Because p ∈ B, we find that p|x and p|y. The

conclusion follows.

It’s time for a hard problem.

Example 8. Find the smallest nonnegative integer n for which there

exists a non-constant function f : Z → [0,∞) with the following prop-

erties:

a) f(xy) = f(x)f(y);
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b) 2f(x2 + y2)− f(x)− f(y) ∈ {0, 1, . . . , n} for all integers x and y.

For this n, find all the functions with the above properties.

Solution. We will use all results proved in the beginning of the note.

First, we will prove that for n = 1 there are functions which verify a)

and b). We remind that A and B are the sets of all primes of the form

4k + 1 and 4k + 3, respectively. For any p ∈ B we define:

fp : Z → Z, fp(x) =

{
0, if p|x
1, otherwise

Using properties of sets A and B, one can easily verify that fp verifies

the restrictions of the problem. Hence fp is a solution of the problem for

any p ∈ B.

We will prove now that if f is non-constant and verifies the conditions

of the problem, then n > 0. Suppose not. Then 2f(x2+y2) = f(x)+f(y)

and hence 2f2(x) = 2f(x2 + 02) = f(x) + f(0). It is clear that we

have f2(0) = f(0). Since f is non-constant, we must have f(0) = 0.

Consequently, we must have 2f2(x) = f(x) for every integer x. But if

there exists x such that f(x) =
1
2
, then f2(x2) 6= 2f(x2), contradiction.

Thus, f(x) = 0 for any integer x and f is constant, contradiction. So,

n = 1 is the smallest number for which there are non-constant functions

which verify a) and b).

We will prove now that any non-constant function f which verifies

a) and b) must be of the form fp. We have already seen that f(0) = 0.

Since f2(1) = f(1) and f is non-constant, we must have f(1) = 1. Also,

2f2(x)− f(x) = 2f(x2 + 02)− f(x)− f(0) ∈ {0, 1} for every integer x.

Thus, f(x) ∈ {0, 1}.
Since

f2(−1) = f(1) = 1 and f(−1) ∈ [0,∞), we must have f(−1) = 1

and f(−x) = f(−1)f(x) = f(x) for any integer x. Then, since f(xy) =

f(x)f(y), it is enough to find f(p) for any prime p. We prove that there is
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exactly one prime number p for which f(p) = 0. Since f is non-constant,

there exists a prime number p for which f(p) = 0. Suppose there is

another prime q for which f(q) = 0. Then 2f(p2 + q2) ∈ {0, 1}, which

means f(p2 + q2) = 0. Then for any integers a and b we must have: 0 =

2f(a2+b2)f(p2+q2) = 2f((ap+bq)2+(aq−bp)2). Since 0 ≤ f(x)+f(y) ≤
2f(x2 + y2) for any x and y, we must have f(ap + bq) = f(aq− bp) = 0.

Since p and q are relatively prime, there are integers a and b such that

aq− bp = 1. Then we have 1 = f(1) = f(aq− bp) = 0, contradiction. So

,there is exactly one prime number p for which f(p) = 0. Let us suppose

that p = 2. Then f(x) = 0 for any even x and 2f(x2+y2) = 0 for any odd

numbers x and y. This implies that f(x) = f(y) = 0 for any odd numbers

x and y and thus f is constant, contradiction. Therefore p ∈ A ∪ B.

Suppose p ∈ A. According to proposition 2, there are positive integers

a and b such that p = a2 + b2. Then we must have f(a) = f(b) = 0. But

max{a, b} > 1 and there is a prime number q such that q|max{a, b} and

f(q) = 0 (otherwise, we would have f(max{a, b} = 1). But it is clear

that q < p and thus we have found two distinct primes p and q such

that f(p) = f(q) = 0, which, as we have already seen, is impossible.

Consequently, p ∈ B and we have f(x) = 0 for any x divisible by p and

f(x) = 1 for any x which is not divisible by p. Hence, f must be fp and

the conclusion follows.

Problems for training

1. Prove that if p ∈ A, then it can be represented in exactly one way

as the sum of the squares of two integers, except for the order of the

terms.

2. Prove that a positive integer can be written as the sum of two

perfect squares if and only if it can be written as the sum of the squares

of two rational numbers.
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Euler

3. Find all positive integers n with the property that the equation

n = x2 + y2, where 0 ≤ x ≤ y and (x, y) = 1 has exactly one solution.

4. Here is another proof of the theorem from example 1. Suppose

that p = 4k + 1 ∈ A and let x, y ∈ Z such that max{|x|, |y|} <
p

2
and

2xε

(
2k

k

)
(mod p), y ≡ (2k)!x (mod p). Prove that p = x2 + y2.

Gauss

5. Find all pairs of positive integers (m,n) such that

m2 − 1|3m + (n!− 1)m.

Gabriel Dospinescu

6. The positive integers a, b have the property that the numbers

15a + 16b and 16a − 15b are both perfect squares. What is the least

possible value that can be taken on by the smallest of the two squares?

IMO CE AN?

7. Prove that the number 4mn−m− n cannot be a perfect square

if m,n are positive integers.

IMO 1984 Shortlist

8. Find all n-tuples of positive integers (a1, a2, . . . , an) such that

(a1!− 1)(a2!− 1) . . . (an!− 1)− 16

is a perfect square.

Gabriel Dospinescu

9. Find all pairs of positive integers (x, y) such that the number
x2 + y2

x− y
is a divisor of 1995.

Bulgaria, 1995
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10. Prove that the equation y2 = x5 − 4 does not have integer

solutions.

Balkan, 1998

11. Solve in integer numbers the equation x2 = y7 + 7.

ROMOP, 2001

12. Find all positive integers n such that the number 2n − 1 has a

multiple of the form m2 + 9.

IMO Shortlist, 1999

13. Prove that there exists infinitely many pairs of consecutive num-

bers, no two of them having any prime factor that belongs to B.

14. Prove that if n2 + a ∈ C for any positive integer n, then a ∈ C.

Gabriel Dospinescu

15. Let T the set of the positive integers n for which the equation

n2 = a2 + b2 has solutions in positive integers. Prove that T has density

1.

Moshe Laub, 6583

16. a) Prove that for any real number x and any natural number N

one can find integer numbers p, q such that |qx− p| ≤ 1
N + 1

.

b) Suppose that a ∈ Z is a divisor of a number of the form n2 + 1.

Then prove that a ∈ C.

17. Find all functions f : N → Z with the properties:

1. if a|b then f(a) ≥ f(b)

2. for any natural numbers a, b we have

f(ab) + f(a2 + b2) = f(a) + f(b).

Gabriel Dospinescu, Mathlinks Contest
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18. (for the die hards) Let L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln

be the famous Lucas’s sequence. Then the only n > 1 such that Ln is a

perfect square is n = 3.

Cohn’s theorem
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T2’S LEMMA

T2’s lemma is clearly a direct application of the Cauchy-Schwarz in-

equality. Some will say that it is actually the Cauchy-Schwarz inequality

and they are not wrong. Anyway, this particular lemma has become very

popular among the American students who attended the training of the

USA IMO team. This happened after a lecture delivered by the first

author at the Mathematical Olympiad Summer Program (MOSP) held

at Georgetown University in June, 2001.

But what exactly does this lemma say? It says that for any real

numbers a1, a2, . . . , an and any positive real numbers x1, x2, . . . , xn the

inequality

a2
1

x1
+

a2
2

x2
+ · · ·+ a2

n

xn
≥ (a1 + a2 + · · ·+ an)2

x1 + x2 + · · ·+ xn
(1)

holds. And now we see why calling it also the Cauchy-Schwarz inequality

is natural, since it is practically an equivalent form of this inequality:(
a2

1

x1
+

a2
2

x2
+ · · ·+ a2

n

xn

)
(x1 + x2 + · · ·+ xn)

≥

√a2
1

x1
·
√

x1 +

√
a2

2

x2
·
√

x2 + · · ·+

√
a2

n

xn
·
√

xn

2

.

But there is another nice proof of (1), by induction. The inductive

step is reduced practically to the case n = 2, which is immediate. Indeed,

it boils down to (a1x2 − a2x1)2 ≥ 0 and the equality occurs if and only

if
a1

x1
=

a2

x2
. Applying this result twice it follows that

a2
1

x1
+

a2
2

x2
+

a2
3

x3
≥ (a1 + a2)2

x1 + x2
+

a2
3

x3
≥ (a1 + a2 + a3)2

x1 + x2 + x3

and we see that a simple inductive argument finishes the proof. With this

brief introduction, let us discuss some problems. And there are plenty
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of them given in mathematical contests or proposed in mathematical

magazines!

First, an old problem, that became classical. We will see that with

T2’s lemma it becomes straightforward and even more, we will obtain a

refinement of the inequality.

Example 1. Prove that for any positive real numbers a, b, c

a3

a2 + ab + b2
+

b3

b2 + bc + c2
+

c3

c2 + ca + a2
≥ a + b + c

3
.

Tournament of the Towns, 1998

Solution. We will change the left-hand side of the inequality so that

we could apply T2’s lemma. This is not difficult: we just have to write it

in the form

a4

a(a2 + ab + b2)
+

b4

b(b2 + bc + c2)
+

c4

c(c2 + ca + a2)
.

It follows that the left-hand side is greater than or equal to

(a2 + b2 + c2)2

a3 + b3 + c3 + ab(a + b) + bc(b + c) + ca(c + a)

But we can easily observe that

a3 + b3 + c3 + ab(a + b) + bc(b + c) + ca(c + a) = (a + b + c)(a2 + b2 + c2),

so we have proved an even stronger inequality, that is

a3

a2 + ab + b2
+

b3

b2 + bc + c2
+

c3

c2 + ca + a2
≥ a2 + b2 + c2

a + b + c
.

The second example also became representative for a whole class of

problems. There are countless examples of this type in numerous contests

and mathematical magazines, so we find it necessary to discuss it at this

point.
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Example 2. For arbitrary positive real numbers a, b, c, d prove the

inequality

a

b + 2c + 3d
+

b

c + 2d + 3a
+

c

d + 2a + 3b
+

d

a + 2b + 3c
≥ 2

3
.

Titu Andreescu, IMO 1993 Shortlist

Solution. If we write the left-hand side in the form

a2

a(b + 2c + 3d)
+

b2

b(c + 2d + 3a)
+

c2

c(d + 2a + 3b)
+

d2

d(a + 2b + 3c)
,

then the way to continue is clear, since from the lemma we obtain

a

b + 2c + 3d
+

b

c + 2d + 3a
+

c

d + 2a + 3b
+

d

a + 2b + 3c

≥ (a + b + c + d)2

4(ab + bc + cd + da + ac + bd)
.

Hence it suffices to prove the inequality

3(a + b + c + d)2 ≥ 8(ab + bc + cd + da + ac + bd).

But it is not difficult to see that

(a + b + c + d)2 = a2 + b2 + c2 + d2 + 2(ab + bc + cd + da + ac + bd),

implies

8(ab + bc + cd + da + ac + bd) = 4(a + b + c + d)2 − 4(a2 + b2 + c2 + d2).

Consequently, we are left with the inequality

4(a2 + b2 + c2 + d2) ≥ (a + b + c + d)2,

which is just the Cauchy-Schwarz inequality for four variables.

The problem below, given at the IMO 1995, was discussed exten-

sively in many publications. It could be also solved by using the above

lemma.
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Example 3. Let a, b, c be positive real numbers such that abc = 1.

Prove that
1

a3(b + c)
+

1
b3(c + a)

+
1

c3(a + b)
≥ 3

2
.

Solution. We have:

1
a3(b + c)

+
1

b3(c + a)
+

1
c3(a + b)

=

1
a2

a(b + c)
+

1
b2

b(c + a)
+

1
c2

c(c + a)

≥

(
1
a

+
1
b

+
1
c

)2

2(ab + bc + ca)
=

(ab + bc + ca)2

2(ab + bc + ca)
=

ab + bc + ca

2
≥ 3

2
,

the last inequality following from the AM-GM inequality.

The following problem is also not difficult, but it uses a nice combi-

nation between this lemma and the Power-Mean inequality. It is another

example in which proving the intermediate inequality (that is, the in-

equality that remains to be proved after using the lemma) is not difficult.

Example 4. Let n ≥ 2. Find the minimal value of the expression

x5
1

x2 + x3 + · · ·+ xn
+

x5
2

x1 + x3 + · · ·+ xn
+ · · ·+ x5

n

x1 + x2 + · · ·+ xn−1
,

where x1, x2, . . . , xn are positive real numbers satisfying x2
1 + x2

2 + · · ·+
x2

n = 1.

Turkey, 1997

Solution. Usually, in such problems the minimal value is attained

when the variables are equal. So, we conjecture that the minimal value

is
1

n(n− 1)
attained when x1 = x2 = · · · = xn =

1√
n

. Indeed, by using

the lemma, it follows that the left-hand side is greater than or equal to(
n∑

i=1

x3
i

)2

n∑
i=1

xi(x1 + · · ·+ xi−1 + xi+1 + · · ·+ xn)

.
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But it is not difficult to observe that
n∑

i=1

xi(x1 + · · ·+ xi−1 + xi+1 + · · ·+ xn) =

(
n∑

i=1

xi

)2

− 1.

So, proving that

x5
1

x2 + x3 + · · ·+ xn
+

x5
2

x1 + x3 + · · ·+ xn
+ · · ·+ x5

n

x1 + x2 + · · ·+ xn−1

≥ 1
n(n− 1)

reduces to proving the inequality

(
n∑

i=1

x3
i

)2

≥

(
n∑

i=1

xi

)2

− 1

n(n− 1)
.

But this is a simple consequence of the Power-Mean inequality. In-

deed, we have 
n∑

i=1

x3
i

n


1
3

≥


n∑

i=1

x2
i

n


1
2

≥

n∑
i=1

xi

n
,

implying
n∑

i=1

x3
i ≥

1√
n

and
n∑

i=1

√
xi ≤

√
n.

The conclusion follows.

In 1954, H.S.Shapiro asked whether the following inequality is true

for any positive real numbers a1, a2, . . . , an:

a1

a2 + a3
+

a2

a3 + a4
+ · · ·+ an

a1 + a2
≥ n

2
.

The question turned out to be extremely difficult. The answer is

really unexpected: one can prove that the inequality is true for all n =

3, 4, 5, 6, 7 (and for all small values of n the shortest proof is based on
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this lemma), but it is false for all even numbers n ≥ 14 as well as for

sufficiently large odd numbers n. Let us examine the case n = 5, a

problem proposed for MOSP 2001.

Example 5. Prove that for any positive real numbers a1, a2, a3, a4,

a5,
a1

a2 + a3
+

a2

a3 + a4
+

a3

a4 + a5
+

a4

a5 + a1
+

a5

a1 + a2
≥ 5

2
.

Solution. Again, we apply the lemma and we conclude that it suf-

fices to prove the inequality

(a1 + a2 + a3 + a4 + a5)2

≥ 5
2
[a1(a2 + a3) + a2(a3 + a4) + a3(a4 + a5) + a4(a5 + a1) + a5(a1 + a2)]

Let us denote a1 + a2 + a3 + a4 + a5 = S. Then we observe that

a1(a2 + a3) + a2(a3 + a4) + a3(a4 + a5) + a4(a + 5 + a1) + a5(a1 + a2)

=
a1(S − a1) + a2(S − a2) + a3(S − a3) + a4(S − a4) + a5(S − a5)

2

=
S2 − a2

1 − a2
2 − a2

3 − a2
4 − a2

5

2
.

With this identity, we infer that the intermediate inequality is in fact

(a1 + a2 + a3 + a4 + a5)2 ≥
5
4
(S2 − a2

1 − a2
2 − a2

3 − a2
4 − a2

5),

equivalent to 5(a2
1 + a2

2 + a2
3 + a2

4 + a2
5) ≥ S2, which is nothing else then

the Cauchy-Schwarz inequality.

Another question arises: is there a positive real number such that

for any positive real numbers a1, a2, . . . , an and any n ≥ 3 the following

inequality holds:

a1

a2 + a3
+

a2

a3 + a4
+ · · ·+ an

a1 + a2
≥ cn.

This time, the answer is positive, but finding the best such constant

is an extremely difficult task. It was first solved by Drinfield (who, by

the way, is a Fields’ medalist). The answer is quite complicated and we
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will not discuss it here (for a detailed presentation of Drinfield’s method

the interested reader can consult the written examination given at ENS

in 1997). The following problem, given at the Moldavian TST in 2005,

shows that c =
√

2− 1 is such a constant (not optimal).

For any a1, a2, . . . , an and any n ≥ 3 the following inequality holds:

a1

a2 + a3
+

a2

a3 + a4
+ · · ·+ an

a1 + a2
≥ (

√
2− 1)n.

The proof is completely elementary, yet very difficult to find. An in-

genious argument using the arithmetic-geometric means inequality does

the job: let us write the inequality in the form

a1 + a2 + a3

a2 + a3
+

a2 + a3 + a4

a3 + a4
+ · · ·+ an + a1 + a2

a1 + a2
≥
√

2 · n.

Now, using the AM-GM inequality, we see that it suffices to prove

the stronger inequality:

a1 + a2 + a3

a2 + a3
· a2 + a3 + a4

a3 + a4
. . .

an + a1 + a2

a1 + a2
≥ (

√
2)n.

Observe that

(ai + ai+1 + ai+2)2 =
(
ai +

ai+1

2
+

ai+1

2
+ ai+2

)2

≥ 4
(
ai +

ai+1

2

)(ai+1

2
+ ai+2

)
(the last inequality being again a consequence of the AM-GM inequal-

ity). Thus,

n∏
i=1

(ai + ai+1 + ai+2)2 ≥
n∏

i=1

(2ai + ai+1)
n∏

i=1

(2ai+2 + ai+1).

Now, the real trick is to rewrite appropriately the last products. Let

us observe that
n∏

i=1

(2ai+2 + ai+1) =
n∏

i=1

(2ai+1 + ai),
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so
n∏

i=1

(2ai + ai+1)
n∏

i=1

(2ai+2 + ai+1) =
n∏

i=1

[(2ai + ai+1)(ai + 2ai+1)]

≥
n∏

i=1

(2(ai + ai+1)2) = 2n

(
n∏

i=1

(ai + ai+1)

)2

.

The conclusion now follows.

This lemma came handy even at the IMO 2005 (problem 3). In order

to prove that for any positive real numbers x, y, z such that xyz ≥ 1 the

following inequality holds∑ x2 + y2 + z2

x5 + y2 + z2
≤ 3,

a few students successfully used the above mentioned lemma. For exam-

ple, a student from Ireland applied this result and called it ”SQ Lemma”.

During the coordination, the Irish deputy leader explained what ”SQ”

stood for: ”...escu”. A typical solution using this lemma is as follows:

x5 + y2 + z2 =
x4

1
x

+
y4

y2
+

z4

z2
≥ (x2 + y2 + z2)2

1
x

+ y2 + z2
,

hence

∑ x2 + y2 + z2

x5 + y2 + z2
≤
∑ 1

x
+ y2 + z2

x2 + y2 + z2
= 2 +

xy + yz + zx

xyz(x2 + y2 + z2)
≤ 3.

It is now time for the champions. We begin with a difficult geometric

inequality for which we have found a direct solution using T2’s lemma.

Here it is.

Example 6. Prove that in any triangle ABC the following inequality

holds
rarb

mamb
+

rbrc

mbmc
+

rcra

mcma
≥ 3.

Ji Chen, Crux Mathematicorum
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Solution. Of course, we start by translating the inequality into an

algebraic one. Fortunately, this is not difficult, since using Heron’s rela-

tion and the formulas

ra =
K

s− a
, ma =

√
2b2 + 2c2 − a2

2

and the likes the desired inequality takes the equivalent form

(a + b + c)(b + c− a)√
2a2 + 2b2 − c2 ·

√
2a2 + 2c2 − b2

+
(a + b + c)(c + a− b)√

2b2 + 2a2 − c2 ·
√

2b2 + 2c2 − a2

+
(a + b + c)(a + b− c)√

2c2 + 2b2 − a2 ·
√

2c2 + 2a2 − b2
≥ 3.

In this form, the inequality is more that monstrous, so we try to

see if a weaker form holds, by applying the AM-GM inequality to each

denominator. So, let us try to prove the stronger inequality

2(a + b + c)(c + b− a)
4a2 + b2 + c2

+
2(a + b + c)(c + a− b)

4b2 + c2 + a2

+
2(a + b + c)(a + b− c)

4c2 + a2 + b2
≥ 3.

Written in the more appropriate form

c + b− a

4a2 + b2 + c2
+

c + a− b

4b2 + c2 + a2
+

a + b− c

4c2 + a2 + b2
≥ 3

2(a + b + c)

we see that by T2’s lemma the left-hand side is at least

(a + b + c)2

(b + c− a)(4a2 + b2 + c2) + (c + a− b)(4b2 + a2 + c2) + (a + b− c)(4c2 + a2 + b2)
.

Basic computations show that the denominator of the last expression

is equal to

4a2(b + c) + 4b2(c + a) + 4c2(a + b)− 2(a3 + b3 + c3)

and consequently the intermediate inequality reduces to the simpler form

3(a3 + b3 + c3) + (a + b + c)3 ≥ 6[a2(b + c) + b2(c + a) + c2(a + b)].
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Again, we expand (a + b + c)3 and obtain the equivalent inequality

4(a3 + b3 + c3) + 6abc ≥ 3[a2(b + c) + b2(c + a) + c2(a + b)],

which is not difficult at all. Indeed, it follows from the inequalities

4(a3 + b3 + c3) ≥ 4[a2(b + c) + b2(c + a) + c2(a + b)]− 12abc

and

a2(b + c) + b2(c + a) + c2(a + b) ≥ 6abc.

The first one is just an equivalent form of Schur’s inequality, while

the second follows immediately from the identity

a2(b+ c)+ b2(c+ a)+ c2(a+ b)− 6abc = a(b− c)2 + b(c− a)2 + c(a− b)2.

After all, we have managed to prove the intermediate inequality,

hence the problem is solved.

The journey continues with a very difficult problem, given at the

Japanese Mathematical Olympiad in 1997 and which became famous due

to its difficulty. We will present two solutions for this inequality. The first

one uses a nice combination between this lemma and the substitution

discussed in the unit ”Two useful substitutions”.

Example 7. Prove that for any positive real numbers a, b, c the

following inequality holds

(b + c− a)2

a2 + (b + c)2
+

(c + a− b)2

b2 + (c + a)2
+

(a + b− c)2

c2 + (a + b)2
≥ 3

5
.

Japan, 1997

Solution. Of course, from the introduction to this problem, the

reader has already noticed that it is useless to try a direct application of

the lemma, since any such approach is doomed. But with the substitution

x =
b + c

a
, y =

c + a

b
, z =

a + b

c
,
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we have to prove that for any positive real numbers x, y, z satisfying

xyz = x + y + z + 2, the inequality

(x− 1)2

x2 + 1
+

(y − 1)2

y2 + 1
+

(z − 1)2

z2 + 1
≥ 3

5

holds. It is now time to use T2’s lemma in the form

(x− 1)2

x2 + 1
+

(y − 1)2

y2 + 1
+

(z − 1)2

z2 + 1
≥ (x + y + z − 3)2

x2 + y2 + z2 + 3
.

Hence it is enough to prove the inequality

(x + y + z − 3)2

x2 + y2 + z2 + 3
≥ 3

5
.

But this is equivalent to

(x + y + z)2 − 15(x + y + z) + 3(xy + yz + zx) + 18 ≥ 0.

This is not an easy inequality. We will use the proposed problem 3

from the unit ”Two useful substitutions” to reduce the above inequality

to the form

(x + y + z)2 − 9(x + y + z) + 18 ≥ 0,

which follows from the inequality x + y + z ≥ 6. And the problem is

solved.

But here is another original solution.

Alternative solution. Let us apply T2’s lemma in the following

form:
(b + c− a)2

a2 + (b + c)2
+

(c + a− b)2

b2 + (c + a)2
+

(a + b− c)2

c2 + (a + b)2

=
((b + c)2 − a(b + c))2

a2(b + c)2 + (b + c)4
+

((c + a)2 − b(c + a))2

b2(c + a)2 + (c + a)4
+

((a + b)2 − c(a + b))2

c2(a + b)2 + (a + b)4

≥ 4(a2 + b2 + c2)2

a2(b + c)2 + b2(c + a)2 + c2(a + b)2 + (a + b)4 + (b + c)4 + (c + a)4
.
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Consequently, it suffices to prove that the last quantity is greater

than or equal to
3
5
. This can be done by expanding everything, but here

is an elegant proof using the observation that

a2(b + c)2 + b2(c + a)2 + c2(a + b)2 + (a + b)4 + (b + c)4 + (c + a)4

= [(a + b)2 + (b + c)2 + (c + a)2](a2 + b2 + c2)

+2ab(a + b)2 + 2bc(b + c)2 + 2ca(c + a)2.

Because

(a + b)2 + (b + c)2 + (c + a)2 ≤ 4(a2 + b2 + c2),

we observe that the desired inequality reduces to

2ab(a + b)2 + 2bc(b + c)2 + 2ca(c + a)2 ≤ 8
3
(a2 + b2 + c2)2.

But this inequality is not so difficult. Indeed, first we observe that

2ab(a + b)2 + 2bc(b + c)2 + 2ca(c + a)2

≤ 4ab(a2 + b2) + 4bc(b2 + c2) + 4ca(c2 + a2).

Then, we also find that

4ab(a2 + b2) ≤ a4 + b4 + 6a2b2,

since (a− b)4 ≥ 0. Hence

4ab(a2 + b2) + 4bc(b2 + c2) + 4ca(c2 + a2) ≤ 2(a2 + b2 + c2)2

+2(a2b2 + b2c2 + c2a2) ≤ 8
3
(a2 + b2 + c2)2

and so the problem is solved. With minor changes, we can readily see

that this solution works without the assumption that a, b, c are positive.

We end this discussion (which remains probably permanently open)

with a difficult problem, based on two hidden applications of T2’s lemma.
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Example 8. Let a1, a2, . . . , an > 0 such that a1 + a2 + · · ·+ an = 1.

Prove that:

(a1a2+a2a3+· · ·+ana1)
(

a1

a2
2 + a2

+
a2

a2
3 + a3

+ · · ·+ an

a2
1 + a1

)
≥ n

n + 1
.

Gabriel Dospinescu

Solution. How can we get to a1a2 + a2a3 + · · · + ana1? Probably

from
a2

1

a1a2
+

a2
2

a2a3
+ · · · + a2

n

ana1
after we use the lemma. So, let us try

this the following estimation:

a1

a2
+

a2

a3
+· · ·+an

a1
=

a2
1

a1a2
+

a2
2

a2a3
+· · ·+ a2

n

ana1
≥ 1

a1a2 + a2a3 + · · ·+ ana1
.

The new problem, proving that

a1

a2
2 + a2

+
a2

a2
3 + a3

+ · · ·+ an

a2
1 + a1

≥ n

n + 1

(
a1

a2
+

a2

a3
+ · · ·+ an

a1

)
seems even more difficult, but we will see that we have to make one more

step in order to solve it. Again , we look at the right-hand side and we

write
a1

a2
+

a2

a3
+ · · ·+ an

a1
as

(
a1

a2
+

a2

a3
+ · · ·+ an

a1

)2

a1

a2
+

a2

a3
+ · · ·+ an

a1

.

After applying T2’s lemma, we find that

a1

a2
2 + a2

+
a2

a2
3 + a3

+ · · ·+ an

a2
1 + a1

=

(
a1

a2

)2

a1 +
a1

a2

+

(
a2

a3

)2

a2 +
a2

a3

+ · · ·+

(
an

a1

)2

an +
an

a1

≥

(
a1

a2
+

a2

a3
+ · · ·+ an

a1

)2

1 +
a1

a2
+

a2

a3
+ · · ·+ an

a1

.
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And we are left with an easy problem: if t =
a1

a2
+ · · · + an

a1
, then

t2

1 + t
≥ nt

n + 1
, or t ≥ n. But this follows immediately from the AM-GM

inequality.

Problems for training

1. Let a, b, c, d be positive real numbers such that a + b + c + d = 1.

Prove that
a2

a + b
+

b2

b + c
+

c2

c + d
+

d2

d + a
≥ 1

2
.

Ireland, 1999

2. Let a, b, c, be positive real numbers satisfying a2 + b2 + c2 = 3abc.

Prove that
a

b2c2
+

b

c2a2
+

c

a2b2
≥ 9

a + b + c
.

India

3. Let x1, x2, . . . , xn, y1, y2, . . . , yn be positive real numbers such that

x1 + x2 + · · ·+ xn ≥ x1y1 + x2y2 + · · ·+ xnyn.

Prove that

x1 + x2 + · · ·+ xn ≤
x1

y1
+

x2

y2
+ · · ·+ xn

yn
.

Romeo Ilie, Romanian Olympiad, 1999

4. For arbitrary positive real numbers a, b, c prove the inequality

a

b + 2c
+

b

c + 2a
+

c

a + 2b
≥ 1.

Czech-Slovak Competition, 1999

5. Prove that for any positive real numbers a, b, c satisfying a+b+c =

1,
a

1 + bc
+

b

1 + ca
+

c

1 + ab
≥ 9

10
.

India
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6. Prove that for any positive real numbers a, b, c, d satisfying ab +

bc + cd + da = 1 the following inequality is true

a3

b + c + d
+

b3

c + d + a
+

c3

d + a + b
+

d3

a + b + c
≥ 1

3
.

IMO 1990 Shortlist

7. Prove that if the positive real numbers a, b, c satisfy abc = 1, then

a

b + c + 1
+

b

c + a + 1
+

c

a + b + 1
≥ 1.

Vasile Cartoaje, Gazeta Matematica

8. Prove that for any positive real numbers a, b, c the following in-

equality holds

a2 + bc

b + c
+

b2 + ca

c + a
+

c2 + ab

a + b
≥ a + b + c.

Cristinel Mortici, Gazeta Matematica

9. Prove that for any nonnegative real numbers x1, x2, . . . , xn,

x1

xn + x2
+

x2

x1 + x3
+ · · ·+ xn

xn−1 + x1
≥ 2.

Tournament of the Towns, 1982

10. Prove that for any positive real numbers a, b, c, d, e satisfying

abcde = 1,

a + abc

1 + ab + abcd
+

b + bcd

1 + bc + bcde
+

c + cde

1 + cd + cdea

+
d + dea

1 + de + deab
+

e + eab

1 + ea + eabc
≥ 10

3
.

Waldemar Pompe, Crux Mathematicorum

11. Prove that for any positive real numbers a, b, c the following

inequality holds(
a

b + c

)2

+
(

b

c + a

)2

+
(

c

a + b

)2

≥ 3
4
· a2 + b2 + c2

ab + bc + ca
.

Gabriel Dospinescu
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12. Let n ≥ 4 an integer and let a1, a2, . . . , an be positive real num-

bers such that a2
1 + a2

2 + · · ·+ a2
n = 1. Prove that

a1

a2
2 + 1

+
a2

a2
3 + 1

+ · · ·+ an

a2
1 + 1

≥ 4
5
(a1

√
a1 + a2

√
a2 + · · ·+ an

√
an)2.

Mircea Becheanu, Bogdan Enescu, TST 2002, Romania

13. Find the best constant k(n) such that for any positive real

numbers a1, a2, . . . , an satisfying a1a2 . . . an = 1 the following inequality

holds

a1a2

(a2
1 + a2)(a2

2 + a1)
+

a2a3

(a2
2 + a3)(a2

3 + a2)
+ · · ·+ ana1

(a2
n + a1)(a2

1 + a2)
≤ kn.

Gabriel Dospinescu, Mircea Lascu

14. Prove that for any positive real numbers a, b, c,

(2a + b + c)2

2a2 + (b + c)2
+

(2b + c + a)2

2b2 + (c + a)2
+

(2c + a + b)2

2c2 + (a + b)2
≤ 8.

Titu Andreescu, Zuming Feng, USAMO 2003
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ONLY GRAPHS, NO SUBGRAPHS!

There were so many strategies and useful ideas till now, that the

reader might say: enough with this game of tricks! When shall we go

to serious facts? Not only that we will ”dissapoint” him again, but we

will try also to convince him that these are more than simple tools and

tricks. They help to create a good base, which is absolutely indispensable

for someone who enjoys mathematics and moreover, they are the first

step to some really beautiful and difficult theorems or problems. And the

reader must admit that the last problems discussed in the previous units

are quite serious facts. It is worth mentioning that they are not panacea.

This assertion is proved by the fact that each year problems that are

based on well-known ”tricks” prove to be very difficult in contests.

We will focus in this unit on a very familiar theme: graphs without

complete subgraphs. Why do we say familiar? Because there are hun-

dreds of problems proposed to different contests around the world and in

mathematical magazines that deal with this subject and each one seems

to add something. Before passing to the first problem, we will assume

that the basic knowledge about graphs is known and we will denote by

d(A) and C(A) the number, respectively the set of vertices adjacent to

A. Also, we will say that a graph does not have a complete k subgraph

if there aren’t k vertices any two of them connected. For simplicity, we

will say that G is k-free. First, we will discuss probably the first classical

result about triangles-free graphs, the famous Turan’ theorem. But be-

fore that, an useful lemma, which is also known as Zarankiewicz lemma

and which is the main idea in Turan’ theorem’ proof.

Example 1. If G is a k-free graph, then there exists a vertex having

degree at most
[
k − 2
k − 1

n

]
.

Zarankiewicz
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Solution. Suppose not and take an arbitrary vertex A1. Then

|C(A1)| >
[
k − 2
k − 1

n

]
,

so there exists A2 ∈ C(A1). Moreover,

|C(A1) ∩ C(A2)| = d(A1) + d(A2)− |C(A1 ∪A2)|

≥ 2
(

1 +
[
k − 2
k − 1

n

])
− n > 0.

Pick a vertex A3 ∈ C(A1) ∩ C(A2). A similar argument shows that

|C(A1) ∩ C(A2) ∩ C(A3)| ≥ 3
(

1 +
[
k − 2
k − 1

n

])
− 2n.

Repeating this argument, we find

A4 ∈ C(A1) ∩ C(A2) ∩ C(A3), . . . , Ak−1 ∈
k−2⋂
i=1

C(Ai).

Also, we have∣∣∣∣∣
j⋂

i=1

C(Ai)

∣∣∣∣∣ ≥ j

(
1 +

[
k − 2
k − 1

n

])
− (j − 1)n.

This can be proved easily by induction. Thus,∣∣∣∣∣
k−1⋂
i=1

C(Ai)

∣∣∣∣∣ ≥ (k − 1)
(

1 +
[
k − 2
k − 1

n

])
− (k − 2)n > 0

and consequently we can choose

Ak ∈
k−1⋂
i=1

C(Ai).

But it is clear that A1, A2, . . . , Ak form a complete k graph, which

contradicts the assumption that G is k-free.

We are now ready to prove Turan’ theorem.

Example 2. The maximal number of edges of a k-free graph with

vertices is
k − 2

2
· n2 − r2

k − 1
+
(

r

2

)
,
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where r = n (mod k − 1).

Turan’ theorem

Solution. The theorem will be proved by induction on n. Since the

first case is trivial, let us suppose the theorem true for all k-free graphs

having n − 1 vertices and let G a k-free graph with n vertices. Using

Zarankiewicz’ lemma, we can find a vertex A such that

d(A) ≤
[
k − 2
k − 1

n

]
.

Since the subgraph determined by the other n−1 vertices is obviously

k-free, using the inductive hypothesis we find that G has at most[
k − 2
k − 1

n

]
+

k − 2
k − 1

· (n− 1)2 − r2
1

2
+
(

r1

2

)
edges, where r1 = n− 1 (mod k − 1).

Let n = q(k−1)+ r = q1(k−1)+ r1 +1. Then r1 ∈ {r−1, r +k−2}
(this is because r − r1 ≡ 1 (mod k − 1)) and it is easy to check that[

k − 2
k − 1

n

]
+

k − 2
k − 1

· (n− 1)2 − r2
1

2
+
(

r1

2

)
=

k − 2
2

· n2 − r2

k − 1
+
(

r

2

)
and the inductive step is proved. Now, it remains to construct a k-

free graph with n vertices and
k − 2

2
· n2 − r2

k − 1
+
(

r

2

)
edges. This is

not difficult. Just consider k − 1 classes of vertices, r of them having

q + 1 elements and the rest q elements and join the vertices situated in

different groups. It is immediate to prove that this graph is k-free, has
k − 2

2
· n

2 − r2

k − 1
+
(

r

2

)
edges and also the minimal degree of the vertices

is
[
k − 2
k − 1

n

]
. This graph is called Turan’ graph and it is denoted by

T (n, k).

These two examples generate lots of beautiful and difficult problems.

For example, knowing them means a straightforward solution for the

following bulgarian problem.
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Example 3. There are 2001 towns in a country, every one of which is

connected with at least 1600 towns by a direct bus line. Find the largest

n for which it is always possible to find n towns, any two of which are

connected by a direct bus line.

Spring Mathematics Tournament, 2001

Solution. Practically, the problem asks to find the maximal n such

that any graph G with 2001 vertices and minimum degree at least 1600

is not n-free. But Zarankiewicz’ lemma implies that if G is n-free, then

at least one vertex has degree at most
[
n− 2
n− 1

2001
]
. So, we need the

maximal n for which
[
n− 2
n− 1

2001
]

< 1600. It is immediate to see that

it is n = 5. Thus, if n = 5 then any such graph G is not n-free. It

suffices to construct a graph with all degrees of the vertices at least

1600, which is 6-free. We will take of course T (2001, 6), whose minimal

degree is
[
4
4
2001

]
= 1600 and which is of course 6-free. Thus, the answer

is n = 5.

Here is a beautiful application of Turan’ theorem in combinatorial

geometry.

Example 4. Given are 21 points on a circle. Show that at least 100

pairs of points subtend an angle smaller than or equal to 120 at the

center.

Tournament of the Towns, 1986

Solution. In such problems, it is more important to choose the

right graph than to apply the theorem, because as soon as the graph is

appropriately chosen, the solution is more or less straightforward. Here,

we will consider the graph with vertices in the points and we will connect

two points if they subtend an angle smaller than or equal to 120 at the

center. Therefore, we need to prove that this graph has at least 100

edges. It seems that this is a reversed form of Turan’ theorem, which
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maximizes the number of edges in a k-free graph. Yet, the reversed form

of a reversed form is the natural one. In the aim of this principle, let

us look at the ”reversed” graph, the complementary one. We must show

that it has at most
(

21
2

)
−100 = 110 edges. But this is immediate, since

it is clear that this new graph does not have triangles and so, by Turan’

theorem it has at most
212 − 1

4
= 110 edges. And the problem is solved.

At first glance, the following problem seem to have no relation with

the previously examples, but, as we will see, it is a simple consequence

of Zarankiewicz’ lemma. This problem is an adaptation of a USAMO

1978 problem. Anyway, this is trickier than the contest problem.

Example 5. There are n delegates at a conference, each of them

knowing at most k languages. Anyway, among any three delegates, at

least two speak a common language. Find the smallest number n (in

terms of k) such that it is always possible to find a language spoken by

at least three delegates.

Solution. We will prove that n = 2k + 3. First, we prove that if

there are 2k + 3 delegates,then the conclusion of the problem holds.

The condition ”among any three of them there are at least two who

can communicate” suggests us to take the 3-free graph with vertices

in the persons and whose edges join persons that cannot communicate.

From Zarankiewicz’ lemma, there exists a vertex whose degree is at most[n
2

]
= k +1. Thus, it is not connected with at least k +1 other vertices.

Therefore, there exists a person A and k + 1 persons A1, A2, . . . , Ak+1

that can communicate with A. Since A knows at most k languages, there

are two persons among A1, A2, . . . , Ap that know a language also known

by A. But that language is known by at least three delegates and we are

done. It remains to prove now that we can create a situation in which

there are 2k + 2 delegates, but no language is known by more than two

delegates. We use again Turan’ graph, by creating two groups of k + 1
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delegates. In each group a person will have a common language with

each other person from the group and will not have common languages

with the members of the other group. Of course, any language is spoken

by at most two delegates and there are no triangles.

The following problem turned out to be a surprise at one of the Team

Selection Tests for 2004 IMO, being solved by 4 contestants. The idea is

even easier than in the previous problems, but this time we need a little

observation, that is not so obvious.

Example 6. Let A1, A2, . . . , A101 be different subsets of the set

{1, 2, . . . , n}. Suppose that the union of any 50 subsets has more than
50
51

n elements. Prove that there are three subsets among them, any two

of them having common elements.

Gabriel Dospinescu, TST 2004 Romania

Solution. Of course, as the conclusion suggests, we should take a

graph with vertices in the subsets, connecting two subsets if they have

common elements. Let us assume that this graph is 3-free. The main

idea is not to use Zarankiewicz’ lemma, but to find much more vertices

with small degrees. In fact, we will prove that there are at least 51

vertices whose degree are smaller than or equal to 50. Suppose this is

not the case, thus there are at least 51 vertices whose degrees are greater

than 51. Let us pick such a vertex A. It is connected with at least 51

vertices, thus it must be adjacent to a vertex B, whose degree is at

least 51. Since A and B are each connected with at least 51 vertices,

there is a vertex adjacent to both, so we have a triangle, contradicting

our assumption. Therefore, we can find Ai1 , . . . , Ai51 , all of them having

degrees at most 50. Consequently, Ai1 is disjoint from at least 50 subsets.

Since the union of these subsets has more than
50
51

n elements, we infer

that |Ai1 | < n− 50
51

n =
n

51
. In a similar way, we obtain that |Aij | ≤

n

51
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for all j ∈ {1, 2, . . . , 51} and so

|Ai1 ∪Ai2 ∪ · · · ∪Ai50 | ≤ |Ai1 |+ · · ·+ |Ai50 | <
50
51

n,

which contradicts the hypothesis. And the solution ends here.

We end the discussion with an adaptation of a very nice and quite

challenging problem from the American Mathematical Monthly.

Example 7. Prove that the complementary of any 3-free graph with

n vertices and m edges has at least

n(n− 1)(n− 5)
24

+
2
n

(
m− n2 − n

4

)2

triangles.

A.W Goodman, AMM

Solution. Believe it or not, the number of triangles from the com-

plementary graph can be expressed only in terms of the degrees of the

vertices of the graph. More precisely, if G is the graph, then the number

of triangles from the complementary graph is(
n

3

)
− 1

2

∑
x∈X

d(x)(n− 1− d(x)),

where X is the set of vertices of G. Indeed, consider all triples (x, y, z) of

vertices of G. We will count the triples that do not form a triangle in the

complementary graph G. Indeed, consider the sum
∑
x∈X

d(x)(n−1−d(x)).

It counts twice every triple (x, y, z) in which are connected, while z is not

adjacent to any of x, y: once for x and once for y. But it also counts twice

every triple (x, y, z) in which y is connected with both x, z: once for x and

once for z. Therefore,
1
2

∑
x∈X

d(x)(n− 1− d(x)) is exactly the number of

triples (x, y, z) that do not form a triangle in the complementary graph

(here we have used the fact that G is 3-free). Now, it is enough to prove
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that(
n

3

)
− 1

2

∑
x∈X

d(x)(n−1−d(x)) ≥ n(n− 1)(n− 5)
24

+
2
n

(
m− n2 − n

4

)2

.

Using the observation that
∑
x∈X

d(x) = 2m, after a few computations

we find the equivalent form of the inequality∑
x∈X

d2(x) ≥ 4m2

n
.

But this is exactly the Cauchy-Schwarz inequality combined with

the observation that ∑
x∈X

d(x) = 2m.

Problems for training

1. In a country there are 1998 cities. In each group of three cities,

at least two are not directly connected. What is the maximal number of

direct flights?

Japan, 1998

2. Let x1, x2, . . . , xn be real numbers. Prove that there are at most
n2

4
pairs (i, j) ∈ {1, 2, . . . , n}× {1, 2, . . . , n} such that 1 < |xi − xj | < 2.

MOSP, CE AN?

3. If n points lie on a circle, then at most
n62
3

segments connecting

them have length greater than
√

2.

Poland, 1997

4. Let G be a graph with no triangles and such that no point is

adjacent to all the other vertices. Also, if A and B are not joined by

an edge, then there exists a vertex C such that AC and BC are edges.

Prove that all vertices have the same degree.

APMO 1990
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5. Show that a graph with n vertices and k edges has at least
k

3n
(4k−

n2) triangles.

APMO 1989

6. Let A be a subset of the set S = {1, 2, . . . , 1000000} having exactly

101 elements. Prove that there exist t1, t2, . . . , t100 ∈ S such that the sets

Aj = {x + tj |x ∈ A} are pairwise disjoint.

IMO 2003

6. There are 1999 people participating in an exhibition. Out of any

50 people, at least 2 do not know each other. Prove that we can find at

least 41 people who each know at most 1958 other people.

Taiwan, 1999

7. A graph with n vertices and k edges is 3-free. Prove that we

can choose a vertex such that the subgraph induced by the remaining

vertices has at most k

(
1− 4k

n2

)
vertices.

USAMO 1995

8. Prove that for every n one can construct a graph with no triangles

and whose chromatic number is at least n.

9. A graph with n2 + 1 edges and 2n vertices is given. Prove that it

contains two triangles sharing a common edge.

China TST, 1987

10. We are given 5n points in a plane and we connect some of them,

so that 10n2 + 1 segments are drawn. We color these segments in 2

colours. Prove that we can find a monochromatic triangle.
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COMPLEX COMBINATORICS

When reading the title, one will surely expect a hard unit, which will

show what a complex field is combinatorics. Unfortunately, this was not

our intention. We ”just” want to discuss some combinatorial problems

that can be solved elegantly using complex numbers. In this moment,

the reader will probably say we are crazy, but we will continue our

idea and say that complex numbers can play a very important role in

counting problems and also in problems related to tilings. There are also

numerous applications in combinatorial number theory, so our purpose

is to present a little bit from each of these situations. After that, the

reader will surely have the pleasure of solving the proposed problems

using this technique. For fear of useless repetition, we will present in the

beginning of the discussion a useful result

Lemma. If p is a prime number and a0, a1, . . . , ap−1 ∈ Q satisfy the

relation

a0 + a1ε + a2ε
2 + · · ·+ ap−1ε

p−1 = 0,

where

ε = cos
2π

p
+ i sin

2π

p
,

then a0 = a1 = · · · = ap−1.

We will say just a few words about the proof, which is not difficult. It

is enough to observe that the polynomials a0+a1x+a2x
2+· · ·+ap−1x

p−1

and 1+x+x2 + · · ·+xp−1 cannot be relatively prime-because they share

a common root-and since 1 + x + x2 + · · ·+ xp−1 is irreducible over Q,

1 + x + x2 + · · · + xp−1 must divide a0 + a1x + a2x
2 + · · · + ap−1x

p−1,

which can only happen if a0 = a1 = · · · = ap−1. Therefore, the lemma

is proved and it is time to solve some nice problems. Not before saying

that in the following examples m(A) will denote the sum of the elements

of the set A. By convention m(∅) = 0.
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The first example is an adaptation from a problem given in the Inter-

County Contest ”Traian Lalescu”. Of course, there is a solution using

recurrent sequences, but it is by far less elegant than the following one.

Example 1. How many numbers with n digits, all equal to 1, 3, 4,

6, 7, 9 are divisible by 7?

Solution. Let a
(k)
n be the number of n-digits numbers, formed using

only the digits 1, 3, 4, 6, 7, 9 and which are congruent to k modulo 7.

It is clear that

6∑
k=0

a(k)
n εk =

∑
x1,x2,...,xn∈{1,3,4,6,7,9}

εx1+x2+···+xn

= (ε + ε3 + ε4 + ε6 + ε7 + ε9)n,

where ε = cos
2π

7
+ i sin

2π

7
. The remark that 1 + ε + ε2 + · · ·+ ε6 = 0

helps us to bring (ε+ε3 +ε4 +ε6 +ε7 +ε9)n to the simpler form (−ε5)n.

Let us assume that n is divisible by 7, for example (the other cases can

be discussed similarly). Then

6∑
k=0

a(k)
n εk = (−1)n

and from the lemma we infer that a
(0)
n − (−1)n = a

(1)
n = · · · = a

(6)
n . Let

k be the common value. Then 7k =
6∑

k=0

a(k)
n − (−1)n = 6n− (−1)n - this

is because exactly 6n numbers have n digits, all equal to 1, 3, 4, 6, 7, 9.

Thus, in this case we have a
(0)
n = (−1)n +

6n − (−1)n

7
. We leave to the

reader the study of the other cases: n ≡ 12, 3, 4, 5, 6 (mod 7).

The same simple, but tricky idea can offer probably the most beau-

tiful solution for the difficult IMO 1995 problem 6. It worth saying that

Nikolai Nikolov won a special prize for the following magnificent solu-

tion.
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Example 2. Let p > 2 be a prime number and A = {1, 2, . . . , 2p}.
Find the number of subsets of A, each having p elements and the sum

of the elements divisible by p.

Marcin Kuczma, IMO 1995

Solution. Consider ε = cos
2π

p
+ i sin

2π

p
and let xj the number of

subsets x ⊂ A such that |X| = p and m(X) ≡ j (mod p). Then it is

clear that
p−1∑
j=0

xjε
j =

∑
B⊂A,|B|=p

εm(B) =
∑

1≤c1<c2<···<cp≤2p

εc1+c2+···+cp .

But
∑

1≤c1<c2<···<cp≤2p

εc1+c2+···+cp is exactly the coefficient of xp in

the expansion (X + ε)(X + ε2) . . . (X + ε2p). Since Xp − 1 = (X −
1)(X − ε) . . . (X − εp−1), we easily find that (X + ε)(X + ε2) . . . (X +

ε2p) = (Xp + 1)2. Thus,
p−1∑
j=0

xjε
j = 2 and lemma implies the equality

x0−2 = x1 = · · · = xp−1. Since there are
(

2p

p

)
subsets with p elements,

we have

x0 + x1 + · · ·+ xp−1 =
(

2p

p

)
.

Therefore,

x0 = 2 +
1
p

((
2p

p

)
− 2
)

.

With a somewhat different, but closely related idea we can solve the

following nice problem.

Example 3. Let a1, a2, . . . , am be natural numbers and let f(k) the

number of m-tuples (c1, c2, . . . , cm) such that 1 ≤ ci ≤ ai, i = 1,m and

c1 + c2 + · · ·+ cm ≡ k (mod n), where n > 1 is a natural number.

Prove that f(0) = f(1) = · · · = f(n − 1) if and only if there exists

an index i ∈ {1, 2, . . . ,m} such that n|ai.

Reid Burton, Rookie Contest ,1999
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Solution. It is not difficult to observe that

n−1∑
k=0

f(k)εk =
∑

1≤ci≤ai

εc1+c2+···+cm =
m∏

i=1

(ε + ε2 + · · ·+ εai)

for any complex number ε such that εn−1 + εn−2 + · · ·+ ε+1 = 0. Thus,

one part of the problem is already proved, since if f(0) = f(1) = · · · =

f(n− 1) then of course we can find i ∈ {1, 2, . . . ,m} such that ε + ε2 +

· · ·+ εai = 0, where we have chosen here a primitive root of the unity ε.

We infer that εai = 1 and so n|ai. Now, suppose there exists an index

i ∈ {1, 2, . . . ,m} such that n|ai. Then for any root ε of the polynomial
n−1∑
k=0

Xk we have
n−1∑
k=0

f(k)εk and so the polynomial
n−1∑
k=0

Xk divides the

polynomial
n−1∑
k=0

f(k)Xk. This is because the polynomial
n−1∑
k=0

Xk has only

simple roots. By a simple degree consideration, this is possible only if

f(0) = f(1) = · · · = f(n− 1). The solution ends here.

The enthusiasm determined by the above solutions will surely be

ATENUAT by the following problem, in which e need some tricky ma-

nipulations.

Example 4. Let p > 2 be a prime number and let m,n be multiples

of p such that n is odd. For any function f : {1, 2, . . . ,m} → {1, 2, . . . , n}
that satisfies p|f(1) + f(2) + · · ·+ f(m), consider the product f(1)f(2) ·

f(m). Prove that the sum of these products is divisible by
(

n

p

)m

.

Gabriel Dospinescu

Solution. Let ε = cos
2π

p
+ i sin

2π

p
and xk be the sum of all

the numbers f(1)f(2) . . . f(m), after all functions f : {1, 2, . . . ,m} →
{1, 2, . . . , n} that satisfy f(1) + f(2) + · · · + f(m) ≡ k (mod p). It is
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clear that:
p−1∑
k=0

xkε
k =

∑
c1,c2,...,cm∈{1,2,...,n}

c1c2 . . . cmεc1+c2+···+cm

= (ε + 2ε2 + · · ·+ nεn)m.

Recall the identity

1 + 2x + 3x2 + · · ·+ nxn−1 =
nxn+1 − (n + 1)xn + 1

(x− 1)2
.

Plugging ε in the previous identity, we find that

ε + 2ε2 + · · ·+ nεn =
nεn+2 − (n + 1)εn+1 + ε

(ε− 1)2
=

nε

ε− 1
.

Consequently,
p−1∑
k=0

xkε
k =

nm

(ε− 1)m
.

On the other hand, it is not difficult to deduce the relations

εp−1 + εp−2 + · · ·+ ε + 1 = 0 ⇔

1
ε− 1

= −1
p
(εp−2 + 2εp−3 + · · ·+ (p− 2)ε + p− 1).

Thus, if we consider

(Xp−2+2Xp−3+· · ·+(p−2)X+p−1)m = b0+b1X+· · ·+bm(p−2)X
m(p−2),

then we have

nm

(ε− 1)m
=
(
−n

p

)m

(c0 + c1ε + · · ·+ cp−1ε
p−1),

where

ck =
∑

k≡k (mod p)

bj .

If r =
(
−n

p

)m

, then we have the relation

x0 − rc0 + (x1rc1)ε + · · ·+ (xp−1 − rcp−1)εp−1 = 0.
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From the lemma, it follows that x0 − rc0 = x1 − rc1 = · · · = xp−1 −
rcp−1 = k. Because clearly c0, c1, . . . , cp−1 ∈ R, it remains to prove that

r|k. Since

pk = x0 + x1 + · · ·+ xp−1 − r(c0 + c1 + · · ·+ cp−1)

= (1 + 2 + · · ·+ n)m − r(b0 + b1 + · · ·+ bm(p−2))

=
(

n(n + 1)
2

)m

− r

(
p(p− 1)

2

)m

,

it is clear that r|k. Here we have used the hypothesis. The problem is

solved.

It is time now to leave this kind of problems and to speak a little bit

about some nice applications of complex numbers in tilings. The idea is

to put a complex number in each square of a table and then to translate

the hypothesis and the conclusion in terms of complex numbers. But

we will better see how this technique works by solving a few problems.

First, some easy problems.

Example 5. Consider a rectangle which can be tiled with a finite

combination of 1×m or n×1 rectangles, where m,n are natural numbers.

Prove that it is possible to tile this rectangle using only rectangles 1×m

or only with rectangles n× 1.

Gabriel Carrol ,BMC Contest,2000

Solution. It is obvious that the rectangle has natural dimensions,

let them be a, b. Now, let us partition the rectangle into 1 × 1 squares

and denote this squares

(1, 1), (1, 2), . . . , (a, 1), . . . , (a, 1), (a, 2), . . . , (a, b).

Next, put the number εi
1ε

j
2 in the square whose label is (i, j), where

ε1 = cos
2π

n
+ i sin

2π

n
, ε2 = cos

2π

m
+ i sin

2π

m
.
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The main observation is that the sum of the numbers in any 1×m

or n × 1 rectangle is 0. This is immediate, but the consequence of this

simple observation is really surprising. Indeed, it follows that the sum

of the numbers from all the squares is 0 and so

0 =
∑

1≤i≤a
1≤j≤b

εi
1ε

j
2 =

a∑
i=1

εi
1

b∑
j=1

εj
2.

Thus, at least one of the numbers
a∑

i=1

εi
1 and

b∑
j−1

εj
2 is 0. But this

means that n|a or m|b. In any of these cases, it is clear that we can tile

the rectangle using only horizontal or vertical rectangles.

The idea in the previous problem is quite useful, many tilings prob-

lems having straightforward solutions by using it. An example is the

following problem, given in Baltic Contest in 1998.

Example 6. Can we tile a 13 × 13 table using only 1 × 4, 4 × 1

rectangles, such that only the center of the table does not belong to any

rectangle?

Baltic Contest,1998

Solution. Suppose such a tiling is possible and label the squares of

the table as in the previous problem. Next, associate to square (k, j) the

number ik+2j . Obviously, the sum of the numbers from each 1× 4, 4× 1

rectangle is 0. Therefore, the sum of all numbers from the squares of the

table is equal to the number in the square situated at the center of the

table. Thus,

i21 = (i + i2 + · · ·+ i13)(i2 + i4 + · · ·+ i26) = i · i
13 − 1
i− 1

· i2 · i
26 − 1
i2 − 1

= i3,

which clearly cannot hold. Thus, the assumption was wrong and such a

tiling does not exist.
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The following example we are going to discuss is based on the same

idea, but here complex numbers are more involved.

Example 7. On a 8 × 9 table we put rectangles 3 × 1 and figures

formed by rectangles 1 × 3 by cutting the median 1 × 1 square. The

rectangles and the figures do not intersect and cannot be rotated. Prove

that there exists a set S of 18 squares of the table such that if there are

exactly two uncovered squares, then they belong to S.

Gabriel Dospinescu

Solution. Again, we label the squares of the table (1, 1), (1, 2), . . . ,

(8, 9) by starting from the up-left corner. In the square labeled (k, j) we

will put the number ij ·εk, where i2 = −1 and ε2 +ε+1 = 0. The sum of

the numbers from any figure or rectangle is 0. The sum of the numbers

from the table is (
8∑

k=1

εk

) 9∑
j=1

ij

 = −i.

Let us suppose that the squares (a1, b1), (a2, b2) are the only un-

covered squares. Then we have of course ib1εa1 + ib2εa2 = −i. Let

z1 = ib1−1εa1 , z2 = ib2−1εa2 . We have |z1| = |z2| = 1 and z1 + z2 = −1.

It follows that
1
z1

+
1
z2

= −1 and so z3
1 = z3

2 = 1. This in turn im-

plies the equalities i3(b1−1) = i3(b2−1) = 1, from where we conclude that

b1 ≡ b2 ≡ 1 (mod 4). Therefore, the relation z1 + z2 = −1 becomes

εa1 + εa2 = −1, which is possible if and only if the remainders of the

numbers a1, a2 when divided by 3 are 1 and 2. Thus, we can take S the

set of squares that lie at the intersection of the lines 1, 2, 4, 5, 7, 8 with

the columns 1, 5, 9. From the above argument, if two squares remain

uncovered, then surely they belong to S. The conclusion is immediate.
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Problems for training

1. Three persons A,B, C play the following game: a subset with k

elements of the set {1, 2, . . . , 1986} is selected randomly, all selections

having the same probability. The winner is A,B or C, according to the

case when the sum of the elements of the selected subset is congruent

to 0, 1, or 2 modulo 3. Find all values of k for which A,B, C have equal

chances of winning.

Imo Shortlist, 1987

2. The faces of a die are labeled with the numbers 1, 2, 3, 4, 5, 6.

We throw the die n times. What is the probability that the sum of the

numbers shown by the die is a multiple of 5?

IMC, 1999

3. Let ak, bk, ck ∈ R, k = 1, n. Let f(p) be the number of ordered

triples (A,B, C) of subsets (not necessarily non-empty) of the set M =

{1, 2, . . . , n} whose union is M and for which∑
i∈M\A

ai +
∑

i∈M\B

bi +
∑

i∈M\C

ci ≡ 3 (mod p).

We assume that∑
i∈∅

xi = 0 and f(0) = f(1) = f(2).

Prove that there exists i ∈ M such that 3|ai + bi + ci.

Gabriel Dospinescu, Recreaţii Matematice

4. How many subsets with 100 elements of the set {1, 2, . . . , 2000}
have the sum of their elements divisible by 5?

Qihong Xie, High School-Mathematics

5. There are 2000 white balls in a box. There are also unlimited

supplies of white, green and red balls, initially outside the box. At each

step, we can replace two balls in the box with one or two balls according

98



to the following rules: two whites or two reds with a green, two greens

with a white and red, a white and green with a red or a green and red

with a white.

a) After some finite number of steps, in the box there are exactly

three balls. Prove that at least one of them is green.

b) Is it possible that after a finite number of steps there is just one

ball in the box?

Bulgaria, 2000

6. A 7× 7 table is tiled with 16 rectangles 1× 3 such that only one

square remains uncovered. What is the position of this square?

Tournament of the Towns, 1984

7. Let k > 2 be an integer. For which odd natural numbers n can

we tile a n × n table with 1 × k or k × 1 rectangles such that only the

square in the center of the table does not belong to any rectangle?

Arhimede Magazine, Gabriel Dospinescu

8. Let n ≥ 2 be an integer. In each point (i, j) having integer coordi-

nates we write the number i+ j (mod n). Find all pairs (a, b) of natural

numbers such that any residue modulo n appears the same number of

times on the frontier of the rectangle of vertices (0, 0), (a, 0), (a, b), (0, b)

and also any residue modulo n appears the same number of times in the

interior of the same rectangle.

Bulgaria, 2001

9. Let F be the family of the subsets of the set A = {1, 2, . . . , 3n}
which have the sum of their elements divisible by 3. For each element of

F , compute the square of sum of its elements. What is the value of the

sum of all the obtained numbers?

Gabriel Dospinescu
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10. Let p > 3 be a prime number and let h be the number of se-

quences (a1, a2, . . . , ap−1) ⊂ {0, 1, 2}p−1 such that p|
p−1∑
j=0

jaj . Also, let

k be the number of sequences (a1, a2, . . . , ap−1) ⊂ {0, 1, 3}p−1 such that

p|
p−1∑
j=0

jaj . Prove that h ≤ k and that the equality appears only for p = 5.

IMO 1999 Shortlist
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FORMAL SERIES REVISITED

We start with a riddle and a challenge for the reader: what is the

connection between the following problems:

1. The set of natural numbers (including 0) is partitioned into a

finite number n ≥ 2 of infinite arithmetic progressions having ratios

r1, r2, . . . , rn and first term a1, a2, . . . , an. Then the following relation is

satisfied:
a1

r1
+

a2

r2
+ · · ·+ an

rn
=

n− 1
2

.

2. The vertices of a regular polygon are colored in some fashion so

that each set of vertices having the same colour is the set of vertices of

a regular polygon. Then there are two congruent polygons among them.

The first problem was discussed during the preparation for IMO of

the USA team, but it seems it is a classical result. As for the second one,

well, it is a famous problem given in a Russian olympiad and proposed

by N. Vasiliev.

If the reader has no clue, then let’s give him one small hint: the

methods used to solve both problems are very similar and can be in-

cluded into a larger field, that of formal series. What is that? Well,

given a commutative ring A, we can define another ring, called the ring

of formal series with coefficients in A and denoted A[X]. An element of

A[X] is of the form
∑
n≥0

anXn, where an ∈ A. As we are going to see

in what follows, these formal series have some very nice applications in

different fields: algebra, combinatorics, number theory. But let’s start

working now, reminding that the reader is supposed to be familiar with

some basic analysis tools:

Example 1. Let a1, a2, . . . , an be some complex numbers such that

for any 1 ≤ k ≤ n we have ak
1 + ak

2 + · · ·+ ak
n = 0. Then all numbers are

equal to 0.
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Solution. Of course, experienced reader has already noticed that

this problem is a trivial consequence of Newton’s relations. But what

can we do if don’t know them? Here is a nice way to solve the problem

(and a way to prove Newton’s relations too).

First of all, observe that the given condition implies that

ak
1 + ak

2 + · · ·+ ak
n = 0

for all positive integer k. Indeed, let

f(X) = Xn + bn−1X
n−1 + · · ·+ b1X + b0

the polynomial
n∏

i−1

(x− ai). Then for all k ≥ n + 1 we have

ak
i + bn−1a

k−1
i + · · ·+ b0a

k−n
i = 0.

Then it suffices to add these relations and to prove the statement by

strong induction.

Now, let us consider the function

f(z) =
n∑

i=1

1
1− zai

.

Developing it by using

1
1− x

= 1 + x + x2 + . . . (for |x| < 1),

we obtain that f(z) = n for all sufficiently small z (which means that

|z|max(|ai|) < 1). Assume that not all numbers are zero and take

a1, . . . , as (s ≥ 1) to be the collection of numbers of maximal modu-

lus among the n numbers. Let the common value of the modulus be r.

By taking a sequence zp →
1
r

such that
∣∣∣zp

r

∣∣∣ < 1, we obtain a contra-

diction with the relation
n∑

i=1

1
1− zpai

= n (indeed, it suffices to observe

that the left-hand side is unbounded, while the second one is bounded).

This shows that all numbers are equal to 0.
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We are going to discuss a nice number theory problem, whose solu-

tion is practically based on the same idea. Yet, there are some details

that make the problem more difficult.

Example 2. Let a1, a2, . . . , aq, x1, x2, . . . , xq and m some integers

such that m|a1x
k
1 + a2x

k
2 + · · ·+ aqx

k
q for all k ≥ 0. Then

m|a1

q∏
i=2

(x1 − xi).

Gabriel Dospinescu

Solution. Consider this time the formal series

f(z) =
q∑

i=1

ai

1− zxi
.

By using the same formula as in the first problem, we deduce immedi-

ately that

f(z) =
q∑

i=1

ai +

(
q∑

i=1

aixi

)
z + . . . ,

which shows that all coefficients of this formal series are integers multi-

ples of m. Obviously, it follows that the formal series∑
a1(1− x2z) . . . (1− xqz)

also has all coefficients multiples of m. Now, consider S
(i)
t the i-th

fundamental symmetric sum in xj (j 6= i). Since all coefficients of∑
a1(1 − x2z) . . . (1 − xqz) are multiples of m, a simple computation

shows that we have the divisibility relation:

m|xq−1
1

q∑
i=1

ai − xq−2
i

q∑
i=1

aiS
(i)
1 + · · ·+ (−1)q−1

q∑
i=1

aiS
(i)
q−1.

This can also be rewritten in the nicer form

m|
q∑

i=1

ai(x
q−1
1 − xq−2

1 S
(i)
1 + · · ·+ (−1)q−1S

(i)
q−1).
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Now, the trivial identity

(x1 − x1) . . . (x1 − xi−1(x1 − xi+1) . . . (x1 − xn) = 0

gives us the not-so obvious relation

xq−1
1 − xq−2

1 S
(i)
1 + · · ·+ (−1)q−1S

(i)
q−1 = 0

for i ≥ 2. Therefore we can conclude, since

xq−1
1 − xq−2

q S
(1)
1 + · · ·+ (−1)q−1S

(1)
q−1 = (x1 − x2) . . . (x1 − xn).

In order to solve the problem announced in the very beginning of

the presentation, we need a little lemma, which is interesting itself and

which we prefer to present as a separate problem:

Example 3. Suppose that the set of natural numbers (including

0) is partitioned into a finite number of infinite arithmetic progressions

of ratios r1, r2, . . . , rn and first term a1, a2, . . . , an. Then the following

relation is satisfied:

1
r1

+
1
r2

+ · · ·+ 1
rn

= 1.

Solution. Let us observe that for any |x| < 1 we have the identity:∑
k≥0

xa1+kr1 +
∑
k≥0

xa2+kr2 + · · ·+
∑
k≥0

xan+krn =
∑
k≥0

xk.

Indeed, all we did was to write the fact that each natural number is

exactly in one of the arithmetic progressions. The above relation becomes

of course the very useful relation:

xa1

1− xr1
+

xa2

1− xr2
+ · · ·+ xan

1− xrn
=

1
1− x

(1)

Let us multiply the relation (1) with 1 − x and use the fact that

lim
x→1

1− xa

1− x
= a. We find of course the desired relation

1
r1

+
1
r2

+ · · ·+ 1
rn

= 1.
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It’s time to solve the first problem. We will just a small, but not

obvious step and we’ll be done. The fundamental relation is again (1).

So:

Example 4. The set of natural numbers (including 0) is partitioned

into a finite number n ≥ 2 of infinite arithmetic progressions having

ratios r1, r2, . . . , rn and first term a1, a2, . . . , an. Then the following re-

lation is satisfied:

a1

r1
+

a2

r2
+ · · ·+ an

rn
=

n− 1
2

.

MOSP

Solution. Let us write the relation (1) in the more appropriate form:

xa1

1 + x + · · ·+ xr1−1
+ · · ·+ xan

1 + x + · · ·+ xrn−1
= 1 (2)

Now, let us derive the relation (2) and then make x → 1 in the

resulting expression. A small computation let to the reader will show

that

n∑
i=1

airi −
ri(ri − 1)

2
r2
i

= 0.

But it suffices to use the result proved in example 3 in order to

conclude that we must have

a1

r1
+

a2

r2
+ · · ·+ an

rn
=

n− 1
2

.

Some commentaries about these two relations are necessary. First of

all, using a beautiful and hard result due to Erdos, we can say that the

relation
1
r1

+
1
r2

+ · · ·+ 1
rn

= 1

implies that max(r1, r2, . . . , rn) < 22n−1
. Indeed, this remarkable theo-

rem due to Erdos asserts that if x1, x2, . . . , xk are natural numbers whose
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sum of inverses is strictly smaller than 1, then

1
x1

+
1
x2

+ · · ·+ 1
xk

≤ 1
u1

+
1
u2

+ · · ·+ 1
uk

,

where u1 = 2, un+1 = u2
n−un+1. But the reader can verify immediately

that
1
u1

+
1
u2

+ · · ·+ 1
uk

= 1− 1
u1u2 . . . uk

(it is trivial by induction). Thus we can write

1− 1
rn

≤ 1− 1
u1u2 . . . un−1

,

or even better rn ≤ u1u2 . . . un−1 = un − 1 (the last relation being

again a simple induction). Once again, the reader will do a short in-

duction to prove that un ≤ 22n−1
. And here is how we can prove

that max(r1, r2, . . . , rn) < 22n−1
(since of course any number among

r1, r2, . . . , rn can be taken as rn). Using the relation proved in example

4, we also deduce that max(a1, a2, . . . , an) < (n−1) ·22n−1−1. This shows

that for fixed n not only there is a finite number of ways to partition

the set of natural numbers into n arithmetic progressions, but we also

have some explicit (even though huge) bounds on ratios and first terms.

It is now time to solve the remarkable problem discussed in the

beginning of this note. We will see that in the framework of the previous

results proved here, the solution becomes natural. However, it is not at

all true, the problem is really difficult.

Example 5. The vertices of a regular polygon are colored such that

vertices having the same colour form regular polygons. Prove that there

are at least two congruent polygons among them.

N. Vasiliev, Russian Olympiad

Solution. Let us assume that the initial polygon (which we will call

big from now on) has n edges and that it is inscribed in the unit circle,

the vertices having as affixes the numbers 1, ε, ε2, . . . , εn−1, where ε =
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e
2iπ
n (of course, we will not loose generality with all these restrictions).

Consider now n1, n2, . . . , nk the number of edges of each monochromatic

polygon and let us assume that all these numbers are different. Let

εj = e
2iπ
nj ; observe that the affixes of the vertices of each monochromatic

polygon are zj , zjεj , . . . , zjε
nj−1
j , for some zj complex numbers on the

unit circle. First, a technical result.

Lemma 1. For any complex number z, if ζ = e
2iπ
p then we have the

identity
1

1− z
+

1
1− zζ

+ · · ·+ 1
1− zζp−1

=
p

1− zp
.

Proving this lemma is a very simple task. Indeed, it suffices to observe

that z, zζ, . . . , zζp−1 are exactly the roots of P (X) = Xp − zp. Or, we

know that
P ′(x)
P (X)

=
1

X − z
+ · · ·+ 1

X − zζp−1
.

By taking X = 1, we obtain exactly the desired identity.

Now, the hypothesis of the problem and lemma 1 allow to write

n1

1− (zz1)n1
+ · · ·+ nk

1− (zzk)nk
=

n

1− zn
.

Also, the simple observation that n1 + n2 + · · ·+ nk = n allows the

new identity

n1z
n1
1

1− (zz1)n1
zn1 +

n2z
n2
2

1− (zz2)n2
zn2 + · · ·+

nkz
nk
k

1− (zzk)nk
znk =

nzn

1− zn
. (1)

Let us assume now that n1 < min(n2, . . . , nk) and let us divide (1)

by zn1 . It follows that for non-zero z we have

n1z
n1
1

1− (zz1)n1
+

n2z
n2
2

1− (zz2)n2
zn2−n1 + · · ·+

nkz
nk
k

1− (zzk)nk
znk−n1 =

nzn−n1

1− zn
.

(2)
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Well, we are done: it suffices to observe that if we make z → 0

(by non-zero values) in (2) , we obtain that zn1
1 = 0, which is surely

impossible since |z1| = 1. The proof ends here.

The following problem that we are going to discuss appeared in var-

ious contests under different forms. It is a very nice identity that can be

proved elementary in a quite messy way. Here is a magical proof using

formal series.

Example 6. For any complex numbers a1, a2, . . . , an ∈ C, the fol-

lowing identity holds:(
n∑

i=1

ai

)n

−
n∑

i=1

∑
j 6=i

aj

n

+
∑

1≤i<j≤n

∑
k 6=i,j

ak

n

− · · ·+ (−1)n−1
n∑

i=1

an
i = n!

n∏
i=1

ai.

Solution. Consider the formal series

f(z) =
n∏

i=1

(ezai − 1).

We are going to compute it in two different ways. First of all, it is

clear that

f(z) =
n∏

i=1

(
zai +

z2a2
i

2!
+ . . .

)

thus we can say that the coefficient of zn in this formal series is
n∏

i=1

ai.

On the other hand, we can write

f(z) = e
z

n∑
i=1

ai

−
n∑

i=1

e
z

∑
j 6=i

aj

+ · · ·+ (−1)n−1
n∑

i=1

ezai + (−1)n.

Indeed, the reader is right: now everything is clear, since the coeffi-

cient of zn in ekz is
kn

n!
. The conclusion is clear: not only the identity is

true, but it has a four-line solution!!!
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There aren’t only algebra problems that can be solved in an elegant

manner using formal series, but also some beautiful concocts of numbers

theory and combinatorics. We shall focus a little bit more on such type

of problems in the sequel.

Example 7. Let 0 = a0 < a1 < a2 < . . . be a sequence of positive

integers such that the equation ai +2aj +4ak = n has a unique solution

i, j, k. Find a1998.

IMO Shortlist, 1998

Solution. Here is a very nice answer: 9817030729. Let A =

{a0, a1, . . . } and bn = 1 if n ∈ A and 0 otherwise. Next, consider the for-

mal series f(x) =
∑
n≥0

bnxn, the generating function of the set A (we can

write in a more intuitive way f(x) =
∑
n≥0

xan). The hypothesis imposed

on the set A translates into

f(x)f(x2)f(x4) =
1

1− x
.

Replace x by x2k
. We obtain the recursive relation

f(x2k
)f(x2k+1

)f(x2k+2
) =

1
1− x2k .

Now, observe two relations:∏
k≥0

f(x2k
) =

∏
k≥0

(f(x23k
)f(x23k+1

)f(x23k+2
)) =

∏
k≥0

1
1− x23k

and∏
k≥1

f(x2k
) =

∏
k≥0

(f(x23k+1
)f(x23k+2

)f(x23k+3
)) =

∏
k≥0

1
1− x23k+1 .

Therefore (the reader has observed that rigor was not the strong

point in establishing these relations) we have

f(x)=
∏
k≥0

1− x23k+1

1− x23k =
∏
k≥0

(1+x8k
)f(x) =

∏
k≥0

1− x23k+1

1− x23k =
∏
k≥0

(1+x8k
).
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This shows that the set A is exactly the set of nonnegative integers

that use only the digits 0 and 1 when written in base 8. A quick com-

putation based on this observation shows that the magical term asked

by the problem is 9817030729.

The following problem is an absolute classic. It appeared, under dif-

ferent forms, in Olympiads from all over the world. We will present the

latest one, given in a Putnam competition:

Example 8. Find all partitions with two classes A,B of the set

of nonnegative integers having the property that for all nonnegative

integers n the equation x + y = n with x < y has as many solutions

(x, y) ∈ A×A as in B ×B.

Solution. Consider f, g the generating functions of A,B and write

them in explicit form

f(x) =
∑
n≥0

anxn, g(x) =
∑
n≥0

bnxn

(as in the previous problem, an equals 1 if n ∈ A and 0 otherwise). The

fact that A,B form a partition of the set of nonnegative integers can be

also rewritten as

f(x) + g(x) =
∑
n≥0

xn =
1

1− x
.

Also, the hypothesis made on the number of solutions of the equation

x + y = n imposes that

f2(x)− f(x2) = g2(x)− g(x2).

Therefore,

f(x2)− g(x2) =
f(x)− g(x)

1− x
,

which can also be rewritten as

f(x)− g(x)
f(x2)− g(x2)

= 1− x.
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Now, the idea is the same as in the previous problems: replace x by

x2k
and iterate the process. After multiplication, we deduce that

f(x)− g(x) =
∏
k≥0

(1− x2k
) lim

x→∞

1
f(x2n)− g(x2n)

.

Let us assume without loss of generality that 0 ∈ A. Then the reader

can easily verify that

lim
n→∞

f(x2n
) = 1 and lim

n→∞
g(x2n

) = 0.

This shows that actually

f(x)− g(x) =
∏
k≥0

(1− x2k
) =

∑
k≥0

(−1)s2(k)xk,

where s2(x) is the sum of digits of binary representation of x. Taking

into account the relation

f(x) + g(x) =
∑
n≥0

xn =
1

1− x
,

we finally deduce that A,B are respectively the set of nonnegative inte-

gers having even (respectively odd) sum of digits when written in binary.

We will discuss two nice problems in which formal series and complex

numbers appear in a quite spectacular way:

Example 9. Let n, k be positive integers such that n ≥ 2k−1 and

let S = {1, 2, . . . , n}. Prove that the number of subsets A ⊂ S such that∑
x∈A

x ≡ m (mod 2k) does not depend on m ∈ {0, 1, . . . , 2k − 1}.

Balkan Olympiad Shortlist 2005

Solution. Let us consider the function (call it formal series, if you

want)

f(x) =
n∏

i=1

(1 + xi).

If we prove that 1 + x + · · · + x2k−1 divides f(x), then we have

certainly done the job. In order to prove this, it suffices of course to
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prove that any 2kth root of unity, except for 1 is a root of f . But it

suffices to observe that for any l ∈ {1, 2, . . . , 2k−1 − 1} we have(
cos

2lπ

2k
+ i sin

2lπ

2k

)2k−2−v2(l)

= −1

and so

f

(
cos

2lπ

2k
+ i sin

2lπ

2k

)
= 0,

which proves our claim and finishes the solution.

Example 10. Let m, n ≥ 2 be positive integers and a1, a2, . . . , an

integers, none of them divisible by mn−1. Prove that one can find integers

e1, e2, . . . , en, not all zero, such that |ei| < m for all i and such that

mn|e1a1 + e2a2 + · · ·+ enan.

IMO Shortlist 2002

Solution. Look at the set A =

{
n∑

i=1

eiai| 1 ≤ ei ≤ m

}
and observe

that we can assume that A is a complete system of residues modulo mn

(otherwise, the conclusion is immediate). Now, consider f(x) =
∑
p∈A

xa.

On one hand, we have

f(x) =
n∏

i=1

m−1∑
j=0

xjai

 =
n∏

i=1

1− xmai

1− xai
.

On the other hand, take ε = e
2iπ
mn . Since A is a complete system of

residues modulo mn, we must have f(ε) = 0. Therefore (the hypothesis

ensures that εai 6= 1) we must have
n∏

i=1

(1 − εmai) = 0. But this surely

contradicts the fact that none of the numbers a1, a2, . . . , an is a multiple

of mn−1.

Finally, it is time for a tough problem. Of course, it will be a com-

binatorial problem, whose nice solution below was found by Constantin

Tanasescu.
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Example 11. Let A be the set of all words which can be formed

using m ≥ 2 given letters. For any c ∈ A, let l(c) be its length. Also,

let C ⊆ A be a set of words. We know that any word from A can be

obtained in at most one way by concatenating words from C. Prove the

inequality: ∑
c∈C

1
ml(c)

≤ 1.

Adrian Zahariuc

Solution. Let S be the set of all words which can be obtained by

concatenating words from C. Let

f(x) =
∑
c∈C

xl(c), g(x) =
∑
s∈S

xl(s).

By the definition of S, we have that:

g(x) = 1 + f(x) + f2(x) + · · · = 1
1− f(x)

.

Therefore,

f(x)g(x) = g(x)− 1. (∗)

Now, S (and C) has at most mk elements of length k, thus g(x) < ∞

and f(x) < ∞ for x <
1
m

. Thus, for all x ∈
(

0,
1
m

)
:

f(x)g(x) = g(x)− 1 < g(x)

and so f(x) < 1 for all x ∈
(

0,
1
m

)
. All we need now is to make x tend

to
1
m

and we will obtain that f

(
1
m

)
≤ 1, which is nothing else than

the desired inequality.

Proposed problems

1. Let z1, z2, . . . , zn be some arbitrary complex numbers. Prove that

for any ε > 0 there are infinitely many numbers n such that

k

√
|zk

1 + zk
2 + · · ·+ zk

n| > max(|z1|, |z2|, . . . , |zn|)− ε.
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2. Find the general formula for the sequence (xn)n≥1 given by

xn+k = a1xn+k−1 + · · ·+ akxn

in function of x0, x1, . . . , xk−1. Here a1, . . . , ak are arbitrary complex

numbers.

3. Prove that if we partition the natural numbers into a finite number

of infinite arithmetic progressions, then there will be two of them having

the same ratio.

4. How many polynomials P with coefficients 0, 1, 2 or 3 satisfy

P (2) = n, where n is a given positive integer?

Romanian TST, 1994

5. Define A1 = ∅, B1 = {0} and An+1 = {1 + x| x ∈ Bn}, Bn+1 =

(An \Bn)∪ (Bn \An). What are the positive integers n such that Bn =

{0}?

AMM

6. In how many ways can we parenthesis a non-associative product

a1a2 . . . an?

Catalan’s problem

7. For which positive integers n can we find real numbers a1, a2, . . . ,

an such that

{|ai − aj | | 1 ≤ i < j ≤ n} =
{

1, 2, . . . ,

(
n

2

)}
?

China TST 2002

8. Let a1, a2, . . . , an relatively prime positive integers. Find in closed

form a sequence (xn)n≥1 such that if (yn)n≥1 is the number of positive

integral solutions to the equation a1x1 + a2x2 + · · · + anxn = k, then

lim
n→∞

xn

yn
= 1.
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9. Let A1, A2, . . . , Ak ∈ Mn(C) be some complex nθn matrices such

that

‖Ap
1 + Ap

2 + · · ·+ Ap
k‖ ≤

C

p!
for any natural number p ≥ 1. Here C does not depend on p ≥ 1 and

‖X‖ = max
1≤i,j≤n

|xij |. Then prove that An
i = 0 for all 1 ≤ i ≤ k.

Gabriel Dospinescu

10. Is there an infinite set of natural numbers such that all suffi-

ciently large integer can be represented in the same number of ways as

the sum of two elements of the set?

D. Newman

11. Find all possibilities to color a regular polygon in the way pre-

sented in example 5.

12. Find all positive integers n with the following property: for any

real numbers a1, a2, . . . , an, knowing the numbers ai + aj , i < j, deter-

mines a1, a2, . . . , an uniquely.

Erdos and Selfridge

13. Suppose that a0 = a1 = 1, (n + 3)an+1 = (2n + 3)an + 3nan−1.

Prove that all terms of this sequence are integers.

Komal

14. Define two sequences of integer numbers (an), (bn) : a1 = b1 = 0

and

an = nbn + a1bn−1 + a2bn−2 + · · ·+ an−1b1.

Prove that for any prime number p we have p|ap.

Komal

15. Is it possible to partition the set of all 12-digit numbers into

groups of 4 numbers such that the numbers in each group have the same

digits in 11 places and four consecutive digits in the remaining place?
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Saint Petersburg Olympiad

16. Prove the following identity
n∑

k=1

∑
1≤i1<i2<···<ik≤n

∑
ε1,ε2,...,εn∈{−1,1}

(−1)k

2k
(ε1ai1 + ε2ai2 + · · ·+ εkaik)2n

=
(−1)n(2n)!a2

1a
2
2 . . . a2

n

2n

for any real numbers a1, a2, . . . , an.

Gabriel Dospinescu

17. A set of positive integers A has the property that for some

positive integers bi, ci, the sets biA + ci, 1 ≤ i ≤ n are disjoint subsets

of A. Prove that
n∑

i=1

1
bi
≤ 1.

IMO Shortlist 2004
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NUMBERS AND LINEAR ALGEBRA

We have seen how analysis can help in solving number theory prob-

lems. But linear algebra has an important role as well, especially because

it makes a beautiful connection between number theory and algebra.

This discussion practically started from the following difficult problem

that we solved in the chapter ”Look at the exponent!” and which ap-

peared in the American Mathematical Monthly a long time ago.

For any integers a1, a2, . . . , an the number
∏

1≤i<j≤n

aj − ai

j − i
is an in-

teger.

You will see a nice and short solution to this problem. At the ap-

propriate time... But first, we need some basic facts about matrices,

determinants, and systems of linear equations. For example, the fact

that any homogeneous linear system
a11x1 + a12x2 + · · ·+ a1nxn = 0

a21x1 + a22x2 + · · ·+ a2nxn = 0

an1x1 + an2x2 + · · ·+ annxn = 0

in which ∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣∣∣
6= 0

has only the trivial solution. Secondly, we need Vandermonde’s identity∣∣∣∣∣∣∣∣∣∣∣

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

. . . . . . . . . . . . . . .

1 xn x2
n . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(xj − xi). (1)
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With these basic facts (of course, for a better understanding, the

reader should have some more knowledge on linear algebra), we are

ready to begin the discussion. As usual, we start with an easy and clas-

sical problem. This time, we will prove a result from the theory of per-

mutations. Here is a nice solution.

Example 1. Let σ be a permutation of the numbers 1, 2, . . . , n.

Then ∣∣∣∣∣∣
∏

1≤i<j≤n

(σ(j)− σ(i))

∣∣∣∣∣∣ = 1! · 2! . . . (n− 1)!.

Solution. The formula in the left-hand side suggests that we might

use Vandermonde’s identity (1). But we also need a small trick. Using

the fact that det A = det tA for any matrix A, we get∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

σ(1) σ(2) σ(3) . . . σ(n)

. . . . . . . . . . . . . . .

σ(1)n−1 σ(2)n−1 σ(3)n−1 . . . σ(n)n−1

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(σ(j)− σ(i)).

So, by multiplying the two determinants we find ∏
1≤i<j≤n

(σ(j)− σ(i))

2

=

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

σ(1) σ(2) σ(3) . . . σ(n)

. . . . . . . . . . . . . . .

σ(1)n−1 σ(2)n−1 σ(3)n−1 . . . σ(n)n−1

∣∣∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣∣∣

1 σ(1) . . . σ(1)n−1

1 σ(2) . . . σ(2)n−1

. . . . . . . . . . . .

1 σ(n) . . . σ(n)n−1

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

S0 S1 . . . Sn−1

S1 S2 . . . Sn

. . . . . . . . . . . .

Sn−1 . . . . . . S2n−2

∣∣∣∣∣∣∣∣∣∣∣
,
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where

Si = σ(1)i + σ(2)i + · · ·+ σ(n)i.

But since σ is a permutation of the numbers 1, 2, . . . , n, we have

Si = 1i + 2i + · · ·+ ni and repeating the arguments we conclude that ∏
1≤i<j≤n

(σ(j)− σ(i))

2

=

 ∏
1≤i<j≤n

(j − i)

2

.

Hence∣∣∣∣∣∣
∏

1≤i<j≤n

(σ(j)− σ(i))

∣∣∣∣∣∣ =
∏

1≤i<j≤n

(j − i) = (n− 1)!(n− 2)! . . . 1!.

Using this result, we can answer immediately the following question:

Example 2. Given a polynomial with complex coefficients, can we

decide if it has a double zero only by performing additions, multiplica-

tions, and divisions on its coefficients?

Solution. Yes, we can. Let f(x) = a0 + a1x + · · ·+ anxn. Then this

polynomial has a double root if and only if ∏
1≤i<j≤n

(xi − xj)

2

= 0,

where x1, x2, . . . , xn are the zeros of the polynomial. But we have seen

that  ∏
1≤i<j≤n

(xi − xj)

2

=

∣∣∣∣∣∣∣∣∣∣∣

S0 S1 . . . Sn−1

S1 S2 . . . Sn

. . . . . . . . . . . .

Sn−1 . . . . . . S2n−2

∣∣∣∣∣∣∣∣∣∣∣
,

where Si = xi
1+xi

2+· · ·+xi
n. So, we need to express Si = xi

1+xi
2+· · ·+xi

n

in terms of the coefficients of the polynomial. But this is a consequence

of Newton’s and Vieta’s formulas, which combined yield

anSi + an−1Si−1 + · · ·+ an−i+1S1 + ian−iSi = 0, i ∈ {1, 2, . . . , }.
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The last formula allows us to prove by induction that Si can be ex-

pressed only in terms of the coefficients of the polynomial (this could

have been shown much easier, since after all Si is a symmetric polyno-

mial in n variables, hence it can be expressed only in terms of the fun-

damental symmetric polynomials, which can also be expressed in terms

of the coefficients due to Vieta’s formulas). Consequently, we can decide

whether  ∏
1≤i<j≤n

(xi − xj)

2

= 0

only by using the described operations on the coefficients of the polyno-

mial, which shows that the answer to the problem is positive.

You may know the following classical problem: if a, b, c ∈ Q verify

a + b 3
√

2 + c 3
√

4 = 0, then a = b = c = 0. Have you ever thought about

the general case? This cannot be done only with simple tricks. We need

much more. Of course, a direct solution could be the following: from

Eisenstein’s criterion, the polynomial f(X) = Xn − 2 is irreducible,

so if a0 + a1
n
√

2 + · · · + an−1
n−1
√

2n−1 = 0 for some rational numbers

a0, a1, . . . , an−1, then the polynomial g(x) = a0 + a1x + · · ·+ an−1x
n−1

is not relatively prime with f . Hence gcd(f, g) is a polynomial of degree

at most n− 1 that divides an irreducible polynomial f of degree n. This

cannot happen, unless g = 0, i.e. a0 = a1 = · · · = an−1 = 0. But here

is a beautiful proof using linear algebra. This time we will have to be

careful to work in the most appropriate field.

Example 3. Prove that if a0, a1, . . . , an−1 ∈ Q satisfy

a0 + a1
n
√

2 + · · ·+ an−1
n−1
√

2n−1 = 0,

then a0 = a1 = · · · = an−1 = 0.

Solution. If a0 + a1
n
√

2 + · · ·+ an−1
n−1
√

2n−1 = 0, then

ka0 + ka1
n
√

2 + · · ·+ kan−1
n−1
√

2n−1 = 0
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for any real number k. Thus, we may assume that a0, a1, . . . , an−1 ∈ Z

(for example, we can choose k to be the least common multiple of all de-

nominators of the numbers a0, a1, . . . , an−1). The idea is to choose n val-

ues for k so that to obtain a system of linear equations, having nontrivial

solutions. Then, the determinant of the system must be zero and this

will imply a0 = a1 = · · · = an−1 = 0. Now, let us fill in the blanks. What

are the best values for k? This can be seen by noticing that n
√

2n−1 · n
√

2 =

2 ∈ Z. So, the values (k1, k2, . . . , kn) = (1, n
√

2, . . . ,
n
√

2n−1) are good and

the system becomes
a0 + a1 · n

√
2 + · · ·+ an−1 ·

n
√

2n−1 = 0

a0 · n
√

2 + a1 ·
n
√

22 + · · ·+ 2an−1 = 0

. . .

a0 ·
n
√

2n−1 + 2a1 + · · ·+ an−1 ·
n
√

2n−2 = 0

Viewing (1, n
√

2, . . . ,
n
√

2n−1) as a nontrivial solution to the system,

we conclude that ∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an−1

2an−1 a0 . . . an−2

. . . . . . . . . . . .

2a1 2a2 . . . a0

∣∣∣∣∣∣∣∣∣∣∣
= 0.

But what can we do now? Expanding the determinant leads nowhere.

As we said before passing to the solution, we should always work in the

most appropriate field. This time the field is Z2, since in this case the

determinant can be easily computed. It equals an
0 = 0. Hence a0 must

be even, that is a0 = 2b0 and we have∣∣∣∣∣∣∣∣∣∣∣

b0 a1 . . . an−1

an−1 a0 . . . an−2

. . . . . . . . . . . .

a1 2a2 . . . a0

∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Now, we interchange the first two lines of the determinant. Its value

remains 0, but when we expand it in Z2, it is an
1 = 0. Similarly, we

find that all ai are even. Let us write ai = 2bi. Then we also have

b0 + b1 · n
√

2 + · · ·+ bn−1 ·
n−1
√

2n−1 = 0 and with the same reasoning we

conclude that all bi are even. But of course, we can repeat this as long

as we want. By the method of infinite descent, we find that a0 = a1 =

· · · = an−1 = 0.

The above solution might seem exaggeratedly difficult compared

with the one using Eisenstein’s criterion, but the idea was too nice not

to be presented here.

The following problem can become a nightmare despite its simplicity.

Example 4. Let A = {a3 + b3 + c3 − 3abc| a, b, c ∈ Z}. Prove that

if x, y ∈ A then xy ∈ A.

Proof. The observation that

a3 + b3 + c3 − 3abc =

∣∣∣∣∣∣∣∣
a c b

b a c

c b a

∣∣∣∣∣∣∣∣
leads to a quick solution. Indeed, it suffices to note that

a c b

b a c

c b a




x z y

y x z

z y x

 =

=


ax + cy + bz az + by + cx ay + bx + cz

ay + bx + cz ax + cy + bz az + by + cx

az + by + cx ay + bx + cz ax + cy + bz


and thus

(a3 + b3 + c3 − 3abc)(x2 + y3 + z3 − 3xyz) = A3 + B3 + C3 − 3ABC,
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where A = ax + cy + bz, B = az + by + cx, C = ax + cy + bz. You see,

identities are not so hard to find...

We all know the famous Bezout’s theorem, stating that if a1, a2, . . . ,

an are relatively prime, then one can find integers k1, k2, . . . , kn such

that k1a1 + k2a2 + · · ·+ knan = 1. The following problem claims more,

at least for n = 3.

Example 5. Prove that if a, b, c are relatively prime integers, then

there are integers x, y, z, u, v, w such that

a(yw − zv) + b(zu− xw) + c(xv − yu) = 1.

Solution. First of all, there is a crucial observation to be made: the

given condition can be also written in the form detA = 1, where

A =


a x u

b y v

c z w

 .

So, let us prove a much more general result.

Theorem. Any vector v whose integer components are relatively

prime is the first column of an integral matrix with determinant equal

to 1.

There is a simple proof of this theorem, using clever manipulations of

determinant properties and induction on the dimension n of the vector

v. Indeed, for n = 2 it is exactly Bezout’s theorem. Now, assume that

it is true for vectors in Zn−1 and take v = (v1, v2, . . . , vn) such that vi

are relatively prime. Consider the numbers
v1

g
, . . . ,

vn−1

g
, where g is the

greatest common divisor of v1, . . . , vn−1. They are relatively prime and
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thus we can find an integral matrix
v1

g
a12 . . . a1,n−1

. . . . . . . . . . . .
vn−1

g
an−1,2 . . . an−1,n


having determinant equal to 1. Now, using Bezout’s theorem, we can

find α, β such that αg + βvn = 1. In this case, it is not difficult to verify

that the following matrix has integral entries and determinant equal to

1: 
v1 a12 . . . a1,n−1 (−1)n−1β

v1

g

. . . . . . . . . . . . . . .

vn−1 an−1,2 . . . an−1,n−1 (−1)n−1β
vn−1

g

vn 0 . . . 0 (−1)n−1α

 .

We said at the beginning that the discussion started from the difficult

problem that appeared in AMM, but yet we did not present its solution

yet. It is now time to do it.

Example 6. For any integers a1, a2, . . . , an then

∏
1≤i<j≤n

aj − ai

j − i
∈ Z.

Armond Spencer, AMM E 2637

Solution. With this introduction, the way to proceed is clear. What

does the expression
∏

1≤i<j≤n

(aj − ai suggest? It is the Vandermonde’s

identity (1), associated to a1, a2, . . . , an. But we have a hurdle here. We

might want to use the same formula for the expression
∏

1≤i<j≤n

(j − i).

This is a dead end. But we have seen what is
∏

1≤i<j≤n

(j − i) equal to in
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the first problem. It equals (n− 1)!(n− 2)! . . . 1!. Now, we can write

∏
1≤i<j≤n

aj − ai

j − i
=

1
1! · 2! . . . (n− 1)!

∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

a1 a2 a3 . . . an

. . . . . . . . . . . . . . .

an−1
1 an−1

2 an−1
3 an−1

n

∣∣∣∣∣∣∣∣∣∣∣
.

As usual, the last step is the most important. The above formula

can be rewritten as

∏
1≤i<j≤n

aj − ai

j − i
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
a1

1!
a2

1!
a3

1!
. . .

an

1!
. . . . . . . . . . . . . . .

an−1
1

(n− 1)!
an−1

2

(n− 1)!
an−1

2

(n− 1)!
. . .

an−1
n

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

And now we recognize the form

∏
1≤i<j≤n

aj − ai

j − i
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1(
a1

1

) (
a2

1

)
. . .

(
an

1

)
(

a1

2

) (
a2

2

)
. . .

(
an

2

)
. . . . . . . . . . . .(
a1

n− 1

) (
a2

n− 1

)
. . .

(
an

n− 1

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which can be proved easily by subtracting lines. Because each number(
ai

j

)
is an integer, the determinant itself is an integer and the conclusion

follows.

We end the unit with a very nice and difficult problem that also

appeared in AMM in 1998. A variant of this problem was given in 2004

at a TST in Romania and turned out to be a hard problem.
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Example 7. Consider the sequence (xn)n≥0 defined by x0 = 4,

x1 = x2 = 0, x3 = 3 and xn+4 = xn + xn+1. Prove that for any prime p

the number xp is a multiple of p.

AMM

Solution. Let us consider the matrix

A =


0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0


and let trX be the sum of the entries of the main diagonal of the matrix

X. We will first prove that xn = TrAn (here A0 = I4). This is going to

be the easy part of the solution. Indeed, for n = 1, 2, 3 it is not difficult to

verify it. Now, assume that the statement is true for all i = 1, 2, . . . , n−1

and prove that it is also true for n. This is true because

xn = xn−4 + xn−3 = TrAn−4 + TrAn−3 = Tr(An−4(A + I4)) = TrAn.

We have used here the relation A4 = A + I4, which can be easily

verified by a simple computation. Hence the claim is proved.

Now, let us prove an important result, that is TrAp ≡ TrA (mod p)

for any integral matrix and any prime p. The proof is not trivial at

all. A possible advanced solution is to start by considering the matrix A

obtained by reducing all entries of A modulo p, then by placing ourselves

in a field in which the characteristic polynomial of A has all its zeroes

λ1, λ2, . . . , λn. This field has clearly characteristic p (it contains Zp) and

so we have (using the binomial formula and the fact that all coefficients(
p

k

)
, 1 ≤ k ≤ p− 1 are multiples of p)

trAp =
n∑

i=1

λp
i =

(
n∑

i=1

λi

)p

= (TrA)p,
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from where the conclusion is immediate via Fermat’s little theorem.

But there is a beautiful elementary solution. Let us consider two

integral matrices A,B and write

(A + B)p =
∑

A1,...,Ap∈{A,B}

A1A2 . . . Ap.

Observe that for any A,B we have Tr(AB) = Tr(BA) and by in-

duction, for any X1, . . . , Xn and any cyclic permutation σ,

Tr(X1 . . . Xn) = Tr(Xσ(1) . . . Xσ(n)).

Now, note that in the sum
∑

A1,...,Ap∈{A,B}

A1A2 . . . Ap we can form

2p − 2
p

groups of p-cycles and we have two more terms Ap and Bp. Thus∑
A1,...,Ap∈{A,B}

Tr(A1A2 . . . Ap) ≡ TrAp +TrBp modulo p (the reader has

already noticed that Fermat’s little theorem comes handy once again),

since the sum of Tr(A1A2 . . . Ap) is a multiple of p in any cycle. Thus

we have proved that

Tr(A + B)p ≡ TrAp + TrBp (mod p)

and by an immediate induction we also have

Tr(A1 + · · ·+ Ak)p ≡
k∑

i=1

TrAp
i .

Next, consider the matrices Eij that have 1 in position (i, j) and 0

elsewhere. For these matrices we clearly have TrAp ≡ TrA (mod p) and

by using the above result we can write (using Fermat’s little theorem

one more time):

TrAp = Tr

∑
i,j

aijEij

p

≡
∑
i,j

Tr(ap
ijE

p
ij) ≡

∑
i,j

aijTrEij = TrA (mod p).
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The result is proved and with it the fact that xp is a multiple of p.

Problems for training

1. Let F1 = 1, F2 = 1 and Fn = Fn−1 + Fn−2 for all n ≥ 3 be the

Fibonacci sequence. Prove that

Fn+1Fn−1 − F 2
n = (−1)n and Fm+n = FnFm−1 + Fn+1Fm.

2. Let the sequence of polynomials (fn)n≥1 be defined by f1(x) = 1,

f2(x) = x and fn+1(x) = xfn(x) + fn−1(x). Prove that this sequence

satisfies the following Fibonacci-type relations fm+n = fnfm−1+fn+1fm.

3. Prove that the number
√

2 +
√

3 +
√

5 +
√

7 is irrational.

4. Compute the product
∏

0≤i<j≤n−1

(εj − εi)2, where

εk = cos
2kπ

n
+ i sin

2kπ

n

for all k ∈ {0, 1, . . . , n− 1}.
5. Consider 2005 real numbers with the following property: whenever

we eliminate one number, the rest can be divided into two groups of 1002

numbers each and having the same sum per group. Prove that all the

2005 numbers are equal.

6. Let a, b, c be relatively prime nonzero integers. Prove that for any

relatively prime integers u, v, w satisfying au + bv + cw = 0, there are

integers m,n, p such that

a = nw − pv, b = pu−mw, c = mv − nu.

Octavian Stanasila, TST 1989, Romania

7. Let p be a prime and suppose that the real numbers a1, a2, . . . ,

ap+1 have the property: no matter how we eliminate one of them, the

rest of the numbers can be divided into at least two nonempty classes,
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any two of them being disjoint and each class having the same arithmetic

mean. Prove that a1 = a2 = · · · = ap+1.

Marius Radulescu, TST 1994 ,Romania

8. Let a, b, c be integers and define the sequence (xn)n≥0 by x0 = 4,

x1 = 0, x2 = 2c, x3 = 3b and xn+3 = axn−1 + bxn + cxn+1. Prove that

for any prime p and any positive integer m, the number xpm is divisible

by p.

Calin Popescu, TST 2004, Romania

9. Prove that for any integers a1, a2, . . . , an the following number

lcm(a1, a2, . . . , an)
a1a2 . . . an

∏
1≤i<j≤n

(aj − ai)

is an integer divisible by 1!2! . . . (n − 2)!. Moreover, we cannot replace

1!2! . . . (n− 2)! by any other multiple of 1!2! . . . (n− 2)!.

10. Let a1, a2, . . . , an ∈ R. A move is transforming the n-tuple

(x1, x2, . . . , xn) into the n-tuple(
x1 + x2

2
,
x2 + x3

2
, . . . ,

xn−1 + xn

2
,
xn + x1

2

)
.

Prove that if we start with an arbitrary n-tuple (a1, a2, . . . , an), after

finitely many moves we obtain an n-tuple (A1, A2, . . . , An) such that

max
1≤i<j≤n

|Ai −Aj | <
1

22005
.

11. Let a
(0)
1 , a

(0)
2 , . . . , a

(0)
n ∈ R and define a

(k)
i =

a
(k−1)
i + a

(k−1)
i+2

2
for

all k ≥ 1 and 1 ≤ i ≤ n (the indices are taken modulo n). Prove that
n∑

k=0

(−2)k

(
n

k

)
a

(k)
i = (−1)na

(0)
i

for all 1 ≤ i ≤ n.

Gabriel Dospinescu
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ARITHMETIC PROPERTIES OF POLYNOMIALS

Another topic with old fashioned tricks... will surely say the reader

at first about this small note. Yet, how many times happened to pass

too many time on a problem just because we neglected basic and triv-

ial aspects of it? This is why we think that speaking about these ”old

fashioned tricks” is not lack of imagination, but rather an imperious

need. In this small note we joined together some classical arithmetic

properties of polynomials. Of course, as usual, the list is just a small

and insignificant introduction to this field, but some basic things should

become reflex and between them there are also some problems we shall

discuss. As usual, we kept some chestnuts for the end of the note, so the

tough solver will have his own part of lecture, especially in a chapter

like this one, when extremely difficult problems with extremely simple

statements can be asked...

There is one result that should be remembered, that is for any poly-

nomial f ∈ Z[X] and any different integers a, b, a−b divides f(a)−f(b).

Practically, this is the fundamental result that we shall use continuously.

We will start with an essential result, due to Schur, and which ap-

peared in many variants in contests. Although in the topic Analysis

against number theory we proved an even more general result using a

nice analytical argument, we prefer to present here a purely arithmetic

proof.

Example 1. (Schur) Let f ∈ Z[X] be a non constant polynomial.

Then the set of prime numbers dividing at least one non-zero number

between f(1), f(2), . . . , f(n), . . . is infinite.

Proof. First, suppose that f(0) = 1 and consider the numbers f(n!).

For sufficiently large n, they are non-zero integers. Moreover, f(n!) ≡ 1

(mod n!) and so if we pick a prime divisor of each of the numbers f(n!).

we obtain the conclusion (since in particular any such prime divisor is
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greater than n). Now, if f(0) = 0, the conclusion is obvious. Suppose thus

that f(0) 6= 0 and consider the polynomial g(x) =
f(xf(0))

f(0)
. Obviously,

g ∈ Z[X] and g(0) = 1. Applying now the first part of the solution, we

easily get the conclusion.

This result has, as we have already said, important consequences.

Here is a nice application.

Example 2. Suppose that f, g ∈ Z[X] are monic non constant irre-

ducible polynomials such that for all sufficiently large n, f(n) and g(n)

have the same set of prime divisors. Then f = g.

Solution. Indeed, by Gauss’s lemma, the two polynomials are ir-

reducible in Q[X]. Even more, if they are not equal, then the above

remark and the fact that they have the same leading coefficient implies

they are relatively prime in Q[X]. Using Bezout’s theorem we conclude

instantly that we can find a non zero integer N and P,Q ∈ Z[X] such

that fP + gQ = N . This shows that for all sufficiently large n, all prime

factors of f(n) divide N . But, of course, this contradicts Schur’s result.

The result of example 2 remains true if we assume the same property

valuable for infinitely many numbers n. Yet, the proof uses some highly

non elementary results of Erdos in this field. Interested reader will find

a rich literature on this field.

A refinement of Schur’s lemma is discussed in the following example.

The ingredient is, as usual, the Chinese remainder theorem.

Example 3. Let f ∈ Z[X] be a non constant polynomial and n, k

some positive integers. Then prove that there exists a positive integer

a such that each of the numbers f(a), f(a + 1), . . . , f(a + n− 1) has at

least k distinct prime divisors.

Bulgarian Olympiad
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Solution. Let us consider an array of different prime numbers

(pij)i,j=1,k such that for some positive integers xij such that f(xij) ≡ 0

(mod pij). We know that this is possible from Schur’s theorem. Now,

using the Chinese remainder theorem we can find a positive integer a

such that ai−1 ≡ xij (mod pij). Using the fundamental result, it follows

that each of the numbers f(a), f(a + 1), . . . , f(a + n− 1) has at least k

distinct prime divisors.

Classical arithmetic ”tricks” and the fundamental result that a − b

divides f(a)− f(b) are the main ingredients of the following problem.

Example 4. Find all polynomials with integer coefficients f such

that for all sufficiently large n, f(n)|nn−1 − 1.

Gabriel Dospinescu

Solution. Since clearly f(X) = X − 1 is a solution, let us consider

an arbitrary solution and write it in the form f(X) = (X−1)rg(X) with

r ≥ 0 and g ∈ Z[X] such that g(1) 6= 0. Thus, there exists M such that

for all n > M we have g(n)|nn−1 − 1.

We will prove that g is constant. Supposing the contrary, then, since

changing g and his opposite has no effect, we may assume that the

leading coefficient of g is positive. Thus one can find k > M such that

for all n > k we have g(n) > 2 and g(n)|nn−1 − 1. Now, since n +

g(n)−n|g(n+g(n))−g(n), we deduce that g(n)|g(n+g(n)) for all n. In

particular, for all n > k we have g(n)|g(n + g(n))|(n + g(n))n+g(n)−1− 1

and g(n)|nn−1 − 1. Of course, this implies that g(n)|nn+g(n)−1 − 1 =

(nn−1 − 1)ng(n) + ng(n) − 1, that is g(n)|ng(n) − 1 for all n > k. Now,

let us consider a prime number p > k and let us look at the smallest

prime divisor of g(p+1) > 2. We clearly have q|g(p+1)|(p+1)g(p+1)−1

and q|(p + 1)q−1 − 1. Since gcd(g(p + 1), q− 1) = 1 (by minimality) and

gcd((p + 1)g(p+1) − 1, (p + 1)q−1 − 1) = (p + 1)gcd(g(p+1),q−1) − 1 = p, it

follows that we actually have p = q. This shows that p|g(p+ q) and thus
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(again using the fundamental result) p|g(1). Since this happens for any

prime number p > k, we must have g(1) = 0. This contradiction shows

that g is indeed constant.

Let g(X) = c. Thus, c|2n(2n−1)−1−1 for all n > M . (2n > M). Since

gcd(2a−1, 2b−1) = 2gcd(a,b)−1, in order to show that |c| = 1, it suffices to

exhibit k < m < n such that gcd(m(2m−1), n(2n−1)) = 1. This is very

simple to realize. Indeed, it suffices to take m a prime number greater

than M,k and to choose n a prime number greater than m(2m − 1).

A simple argument shows that gcd(m(2m − 1), n(2n − 1)) = 1 and so

|c| = 1.

Finally, let us prove that r ≤ 2. Supposing the contrary, we deduce

that

(n− 1)3|nn−1 − 1 ⇔ (n− 1)1|nn−2 + nn−3 + · · ·+ n + 1

for all sufficiently large n and since

nn−2 + nn−3 + · · ·+ n + 1 =

= n− 1 + (n− 1)[nn−3 + 2nn−4 + · · ·+ (n− 3)n + (n− 2)],

we obtain that n− 1|nn−3 + 2nn−4 + · · ·+ (n− 3)n + (n− 2) + 1 for all

sufficiently large n, which is clearly impossible, since

nn−3 + 2nn−4 + · · ·+ (n− 3)n + (n− 2) + 1 ≡ 1 + 2 + · · ·+ (n− 2) + 1

≡ (n− 1)(n− 2
2

+ 1 (mod n− 1).

Hence r ≤ 2. Finally, the relation

nn−1 − 1 = (n− 1)2[nn−3 + 2mn−4 + · · ·+ (n− 3)n + (n− 2) + 1]

shows that (n − 1)2|nn−1 − 1 for all n > 1 and allows to conclude that

all solutions are the polynomials ±(X − 1)r, with r ∈ {0, 1, 2}.
After reading the solution of the following problem, the reader will

have the impression the problem is very simple. Actually, it is extremely
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difficult. There are many possible approaches that fail and the time spent

for solving such a problem can very well tend to infinity.

Example 5. Let f ∈ Z[X] be a non constant polynomial and k ≥ 2

a positive integer such that k
√

f(n) ∈ Q for all positive integers n. Then

there exists a polynomial g ∈ Z[X] such that f = gk.

Folklore

Solution. Let us assume the contrary and let us decompose f =

pk1
1 . . . pks

s gk where 1 ≤ ki < k and pi are different irreducible polyno-

mials in Q[X]. Suppose that s ≥ 1 (which is the same as denying the

conclusion). Since p1 is irreducible in Q[X], it is relatively prime with

p1p2 . . . ps and thus (using Bezout’s theorem and multiplication with in-

tegers) there exist some polynomials with integer coefficients Q,R and

a positive integer c such that

Q(x)p1(x) + R(x)p1(x)p2(x) . . . ps(x) = c.

Now, using the result from example 1, we can take a prime number

q > |c| and a number n such that q|p1(n) 6= 0. We shall have of course

q|p1(n+q) (since p1(n+q) ≡ p1(n) (mod q)). The choice q > |c| ensures

that q does not divide p1(n)p2(n) . . . ps(n) and so vq(f(n)) = vq(p1(n))+

kvq(g(n)). But the hypothesis says that k|vq(f(n)), so we must have

vq(p1(n)) > 2. In exactly the same way we obtain vq(p1(n+q)) ≥ 2. Yet,

using the binomial formula, we can easily establish the congruency

p1(n + q) ≡ p1(n) + qp′1(n) (mod q2).

Therefore, we must have q|p1(n), which contradicts q > |c| and

Q(x)p1(x) + R(x)p1(x)p2(x) . . . ps(x) = c.

This contradiction shows that the hypothesis s ≥ 1 was wrong and

thus the result of the problem follows.
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The next problem was given in the USA TST 2005 and uses a nice

combination of arithmetic considerations and computations using com-

plex numbers. There are many arithmetic properties of polynomials spec-

ulated in this problem, although the problem itself is not so difficult, if

we find the good way to solve it, of course...

Example 6. Let us call a polynomial f ∈ Z[X] special if for any

positive integer k > 1, in the sequence f(1), f(2), f(3), . . . one can find

numbers which are relatively prime with k. Prove that for any n > 1, at

least 71% of all monic polynomials of degree n, with coefficient in the

set {1, 2, . . . , n!} are special.

Titu Andreescu, Gabriel Dospinescu, USA TST 2005

Solution. Of course, before counting such polynomials, it would be

better to find an easier characterization for them.

Let p1, p2, . . . , pr all prime numbers at most equal to n and let us

consider the sets Ai = {f ∈ M | pi|f(m), ∀ m ∈ N∗}, where M is

the set of monic polynomials of degree n, with coefficient in the set

{1, 2, . . . , n!}. We shall prove that the set T of special polynomials is

exactly M \
r⋃

i=1

Ai. Obviously, we have T ⊂ M \
⋃
i≤r

Ai. The converse,

however is not that easy. Let us suppose that f ∈ Z[X] belongs to

M \
r⋃

i=1

Ai and let p be a prime number greater than n. Since f is

monic, Lagrange’s theorem ensures that we can find m such that p is

not a divisor of f(m). It follows then that for any prime number q at

least one of the numbers f(1), f(2), f(3), . . . is not a multiple of q. Let

now k > 1 and q1, q2, . . . , qs its prime divisors. Then we know we can

find u1, . . . , us such that qi does not divide f(ui). Using the Chinese

remainder theorem, we can find a positive integer x such that x ≡ ui

(mod qi). Then f(x) ≡ f(ui) (mod qi) and thus qi does not divide f(x),

thus gcd(f(x), k) = 1. The equality of the two sets is thus proved.
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Using a brutal estimation, we obtain

|T | = |M | −

∣∣∣∣∣
r⋃

i=1

Ai

∣∣∣∣∣ ≥ |M | −
r∑

i=1

|Ai|.

Let’s compute now |Ai|. Actually, we will show that
(n!)n

ppi
i

. Let f a

monic polynomial in Ai,

f(X) = Xn + an−1X
n−1 + · · ·+ a1X + a0.

Then for any m > 1 we have

0 ≡ f(m) ≡ a0 + (a1 + ap + a2p−1 + a3p−2 + . . . )m

+(a2+ap+1+a2p+. . . )m2+· · ·+(ap−1+a2p−2+a3p−3+. . . )mp−1 (mod p),

where, for simplicity, we put p = pi. Using Lagrange’s theorem it follows

that p|a0, p|a1 + ap + a2p−1 + . . . , . . . , p|ap−1 + a2p−2 + . . . We are going

to use this later, but we still need a small observation. Let us count the

number of s-tuples (x1, x2, . . . , xs) ∈ {1, 2, . . . , n!}s such that x1 + x2 +

· · ·+ xs ≡ u (mod p), where u is fixed. Let

ε = cos
2π

p
+ i sin

2π

p
.

Let us observe that

0 = (ε + ε2 + · · ·+ εn!)s

=
p−1∑
k=0

εk|{(x1, x2, . . . , xs) ∈ {1, 2, . . . , n!}s| x1 + · · ·+xs ≡ k (mod p)}|.

A simple argument related to the irreducibility of the polynomial

1 + X + X2 + · · · + Xp−1 shows that all cardinals that appear in the

above sum are equal and that their sum is (n!)s, thus each cardinal

equals
(n!)s

p
.

We are now ready to finish the proof. Assume that among the

numbers a1, ap, a2p−1, . . . there are exactly v1 numbers that among
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ap−1, a2p−2, . . . there are vp−1 numbers. Using the above observations,

it follows that we have

|Ai| =
n!
p
· (n!)v1

p
. . .

(n!)vp−1

p
=

(n!)n

pp
.

Hence, we obtain

|T | ≥ (n!)n −
∑

p prime

(n!)n

pp
.

But

1
55

+
1
77

+ · · · < 1
55

(
1 +

1
5

+
1
52

+ . . .

)
<

1
1000

and so the percent of special polynomials is at least

100
(

1− 1
4
− 1

27
− 1

1000

)
= 75− 100

27
− 1

10
> 71.

The solution of the problem ends here.

Example 7. Suppose that the non constant polynomial f with in-

teger coefficients has no double roots. Then for any positive integer r

there exists n such that f(n) has at least r distinct prime divisors, all of

them appearing with exponent 1 in the decomposition of f(n) in prime

factors.

Iran Olympiad

Solution. Already for r = 1 the problem is in no way obvious, so

let’s not try to attack it directly and concentrate at first on the case

r = 1. Suppose the contrary, that is for all n, all prime divisors of

f(n) appear with exponent at least 2. Since f has no double root, we

deduce that gcd(f, f ′) = 1 in C[X] and thus also in Q[X] (because of

the division algorithm and Euclid’s algorithm). Using Bezout’s theorem

in Q[X], we deduce that we can find integer polynomials P,Q such that

P (n)f(n) + Q(n)f ′(n) = c for a certain positive integer c. Using the

result stated in the first example, we can choose q > c a prime divisor
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of a certain f(n). The hypothesis made ensures that q2|f(n). But then

we also have q|f(n + q) and so q2|f(n + q). Using Newton’s binomial

formula, we deduce immediately that f(n+q) ≡ f(n)+qf ′(n) (mod q2).

We finally deduce that q|p′(n) and so q|c, impossible since our choice was

q > c. Thus the case r = 1 was proved.

Let us try to prove the property by induction and suppose it is true

for r. Of course, the existence of P,Q such that P (n)f(n)+Q(n)f ′(n) = c

for a certain positive integer c did not depend on r, so we keep the above

notations. By inductive hypothesis, there is n such that at least r prime

divisors of f(n) appear with exponent 1. Let these prime factors be

p1, p2, . . . , pr. But it is obvious that n + kp2
1p

2
2 . . . p2

r has the same prop-

erty: all prime divisors p1, p2, . . . , pr have exponent 1 in the decomposi-

tion of f(n+kp2
1p

2
2 . . . p2

r). Since at most a finite number among them can

be roots of f , we may very well suppose from the beginning that n is not

a root of f . Consider now the polynomial g(X) = f(n + (p1 . . . pr)2X),

which is obviously non constant. Thus, using again the result in exam-

ple 1, we can find q > max{|c|, p1, . . . , pr, |p(n)|} a prime number and

a number u such that q|g(u). If vq(g(u)) = 1, victory is ours, since

a trivial verification shows that q, p1, . . . , pr are different prime num-

bers whose exponents in f(n + (p1 . . . pr)2u) are all 1. The difficult case

is when vq(g(u)) ≥ 2. In this case, we shall consider the number N =

n+u(p1 . . . pr)2+uq(p1 . . . pr)2. Let us prove that in the decomposition of

f(N), all prime numbers q, p1, . . . , pr appear with exponent 1. For any pi,

this is obvious since f(N) ≡ f(n) (mod (p1 . . . pr)2). Using once again

binomial formula, we easily obtain that f(N) ≡ f(n + (p1 . . . pr)2u) +

uq(p1 . . . pr)2f ′(N) (mod q2). Now, if vq(f(n)) ≥ 2, then since vq(f(n +

(p1 . . . pr)2u)) = vq(g(u)) ≥ 2, we have q|u(p1 . . . pr)2f ′(N). Remember

that the choice was q > max{|c|, p1, . . . , pr, |p(n)|} so necessarily q|u (if

q|f ′(N) ⇒ q|(f(N), f ′(N))|c ⇒ q ≤ |c|, contradiction). But since q|g(u),
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we must have q|g(0) = f(n). But hopefully, we ensured that n is not a

roof of our polynomial and also that q > max{|c|, p1, . . . , pr, |p(n)|} so

that the last divisibility relation cannot hold. This allows to finish the

induction step and to solve the problem.

Example 8. Find all non constant polynomials f with integer coef-

ficients and with the following property: for any relatively prime positive

integers a, b, the sequence (f(an + b))n≥1 contains an infinite number of

terms, any two of which are relatively prime.

Gabriel Dospinescu

Solution. We will prove that the only polynomials with the spec-

ified property are those of the form Xn, −Xn with n a positive inte-

ger. Because changing f with its opposite does not modify the property

of the polynomial, we can suppose that the leading coefficient of f is

positive. Thus, there exists a constant M such that for any n > M

we have f(n) > 2. From now on, we consider only n > M . Let us

prove that we have gcd(f(n), n) 6= 1 for any such n. Suppose that

there is n > M such that gcd(f(n), n) = 1. Consequently, the sequence

(f(n+kf(n))n≥1 will contain at least two relatively prime numbers. Let

them be s, r. Since f(n)|kf(n) = kf(n) + n − n|f(kf(n) + n) − f(n),

we have f(n)|f(n + kf(n)) for any positive integer k. Hence ,we ob-

tain that s, r are multiples of f(n) > 2, impossible. We have shown

that gcd(f(n), n) 6= 1 for any n > M . Thus ,for any prime p > M we

have p|f(p) and so p|f(0). Since any integer different from zero has a

finite number of divisors, we conclude that f(0) = 0. Thus, there is a

polynomial q with integer coefficients such that f(X) = Xq(X). It is

obvious that q has positive leading coefficient and the same property

as f . Repeating the above argument, we infer that if q is non-constant,

then q(0) = 0 and q(X) = Xh(X). Since f is not constant, the above

argument cannot be repeated infinitely many times and thus one of the
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polynomials g, h must be constant. Consequently, there are positive inte-

gers n, k such that f(X) = kXn. But since the sequence (f(2n + 3))n≥1

contains at least two relatively prime integers, we must have k = 1. We

have obtained that f must have the form Xn. But since f is a solution

if and only if −f is a solution, we infer that any solution of the problem

is a polynomial of the form Xn, −Xn.

Now let us prove that the polynomials of the form Xn, −Xn are solu-

tions. It is enough to prove for Xn and even for X. But this follows triv-

ially from Dirichlet’s theorem. Let us observe that there is another, more

elementary approach. Let us suppose that x1, x2, . . . , xp are terms of the

sequence, any two of which are relatively prime. We prove that we can

add another term xp+1 so that x1, x2, . . . , xp+1 has the same property. It

is clear that x1, x2, . . . , xp are relatively prime with a, so we can apply

the Chinese remainder theorem to find xp+1 greater than x1, x2, . . . , xp,

such that xp+1 ≡ (1− b)a−1
i (mod xi), i ∈ {1, 2, . . . , p}, where a−1

i is a’s

inverse in Z∗
xi

. Then gcd(xp+1, xi) = 1 for i ∈ {1, 2, . . . , p} and thus we

can add xp+1.

Here is an absolute classic, that appears in at least one Olympiad

around the world each year. Very easy, it uses only the fundamental

result.

Example. Suppose that

Fie n natural nenul. Care este gradul minim al unui polinom monic

cu coeficienti intregi f astfel incat n|f(k) pentru orice k natural?

Proposed problems

1. Let (an)n≥1 be an increasing sequence of positive integers such

that for a certain polynomial f ∈ Z[X] we have an ≤ f(n) for all n.

Suppose also that m− n|am − an for all distinct positive integers m,n.
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Prove that there exists a polynomial g ∈ Z[X] such that an = g(n) for

all n.

USAMO 1995

2. We call the sequence of positive integers (an)n≥1 relatively prime

if gcd(am, an) = 1 for any different positive integers m,n. Find all integer

polynomials f ∈ Z[X] such that for any positive integer c, the sequence

(f [n](c))n≥1 is relatively prime. Here f [n] is the composition of f with

itself n times.

Leo Mosser

3. Are there polynomials p, q, r with positive integer coefficients such

that

p(x) + (x2 − 3x + 2)q(x) and q(x) =
(

x2

20
− x

15
+

1
12

)
r(x)?

Vietnam Olympiad

4. Given is a finite family of polynomials with integer coefficients.

Prove that for infinitely many numbers n, if we evaluate any member of

the family in n, we obtain only composite numbers.

Folklore

5. Find all polynomials with integer coefficients such that f(n)|2n−1

for any positive integer n.

Poland Olympiad

6. Suppose that f ∈ Z[X] is a non constant polynomial. Also, sup-

pose that for some positive integers r, k, the following property is sat-

isfied: for any positive integer n, at most r prime factors of f(n) have

appear with exponent at most equal to k. Does it follow that any root

of this polynomial appears with multiplicity at least equal to k + 1?

7. Is it true that any polynomial f ∈ Z[X] that has a root modulo

n for any positive integer n must necessarily have a rational root?
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8. Let f, g ∈ Z[X] some non zero polynomials. Let us consider the

set Df,g = {gcd(f(n), g(n))| n ∈ N}. Prove that the two polynomials are

relatively prime in Q[X] if and only if Df,g.

M. Andronache, Gazeta Matematica 1985

9. Prove that there are no polynomials f ∈ Z[X] with the property:

there exists n > 3 and integers x1, . . . , xn such that f(xi) = xi−1, i = 1, n

(indices are taken mod n).

10. Let f ∈ Z[X] a polynomial of degree n at least 2, with integer

coefficients. Prove that the polynomial f(f(X))−X has at most n integer

roots.

Gh. Eckstein, Romanian TST

11. Find all trinomials f ∈ Z[X] with the property that for any

relatively prime integers m,n, the numbers f(M), f(n) are also relatively

prime.

Sankt Petersburg Olympiad

12. For the die hard: find all polynomials with the above property.

13. Let f ∈ Z[X] be a non constant polynomial. Show that the

sequence f(3n) (mod b) is not bounded.

14. Is there a second degree polynomial f ∈ Z[X] such that for any

positive integer n all prime factors of f(n) are of the form 4k + 3?

AMM

15. Prove that for any n there exists a polynomial f ∈ Z[X] such

that all numbers f(1) < f(2) < · · · < f(n) are

a) prime numbers b) powers of 2.

Folklore

16. Find all integers n > 1 for which there exists a polynomial

f ∈ Z[X] such that for any integer k we have f(k) ≡ 0, 1 (mod n) and

both these congruences have solutions.
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17. Let p be a prime number. Find the maximal degree of a poly-

nomial f ∈ Z[X] having coefficients in the set {0, 1, . . . , p− 1}, knowing

that its degree is at most p and that if p divides f(m) − f(n) then it

also divides m− n.

18. Use example 1 and properties of the cyclotomic polynomials

φn(X) =
∏

1≤k≤n
(k,n)=1

(X − e
2iπk

n )

to prove that there are infinitely many prime numbers of the form 1+kn

for any given n ≥ 2. You may be interested to characterize those numbers

m,n for which p|φm(n), but p does not divide any other number of the

form φd(n), where d is a divisor of m different from m

Classical result
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LAGRANGE INTERPOLATION

Almost everyone knows the Chinese Remainder Theorem, which is a

remarkable tool in number theory. But does everyone know the analogous

form for polynomials? Stated like this, this question may seem impossible

to answer. Then, let us make it easier and also reformulate it: is it true

that given some pair wise distinct real numbers x0, x1, x2, . . . , xn and

some arbitrary real numbers a0, a1, a2, . . . , an, we can find a polynomial

f with real coefficients such that f(xi) = ai for i ∈ {0, 1, . . . , n}? The

answer turns out to be positive and a possible solution to this question

is based on Lagrange’s interpolation formula. It says that an example of

such polynomial is

f(x) =
n∑

i=0

ai

∏
0≤j 6=i≤n

x− xj

xi − xj
(1)

Indeed, it is immediate to see that f(xi) = ai for i ∈ {0, 1, . . . , n}.
Also, from the above expression we can see that this polynomial has

degree less than or equal to n. Is this the only polynomial with this

supplementary property? Yes, and the proof is not difficult at all. Just

suppose we have another polynomial g of degree smaller than or equal

than n and such that g(xi) = ai for i ∈ {0, 1, . . . , n}. Then the polyno-

mial g − f also has degree smaller than or equal to n and vanishes at

0, 1, . . . , n. Thus, it must be null and the uniqueness is proved.

What is Lagrange’s interpolation theorem good for? We will see in

the following problems that it helps us to find immediately the value of a

polynomial in a certain point if we know the values in some given points.

And the reader has already noticed that this follows directly from the

formula (1), which shows that if we know the value in 1 + deg f points,

then we can find easily the value in any other point without solving a

complicated linear system. Also, we will see that it helps in establishing
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some inequalities and bounds for certain special polynomials and will

even help us in finding and proving some beautiful identities.

Now, let us begin the journey trough some nice examples of problems

where this idea can be used. As promised, we will see first how we can

compute rapidly the value in a certain point for some polynomials. This

was one of the favorite’s problems in the old Olympiads, as the following

examples will show. The first example is just an immediate application

of formula (1) and became a classical problem.

Example 1.

Let f be a polynomial of degree n such that

f(0) = 0, f(1) =
1
2
, f(2) =

2
3
, . . . , f(n) =

n

n + 1
.

Find f(n + 1).

USAMO 1975, Great Britain 1989

Solution. A first direct approach would be to write

f(x) =
n∑

k=0

akx
k

and to determine a0, a1, . . . , an from the linear system

f(0) = 0, f(1) =
1
2
, f(2) =

2
3
, . . . , f(n) =

n

n + 1
.

But this is terrible, since the determinants that must be computed

are really complicated. This is surely a dead end. But for someone who

knows Lagrange’s Interpolation Theorem, the problem is straightfor-

ward. Indeed, we have

f(x) =
n∑

i=0

i

i + 1

∏
j 6=i

x− j

i− j
,

so that

f(n + 1) =
n∑

i=0

i

i + 1

∏
n≤i

n + 1− j

i− j
.
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Now, how do we compute this? The reader might say: but we have

already found the value of f(n+1)! Well, it is tacit that the answer should

be expressed in the closest possible form. But, after all, computing the

above sum is not so difficult. Indeed, we can see that∏
j 6=i

n + 1− j

i− j
=

(n + 1)!
(n + 1− i) · i! · (n− i)!

(−1)n−i

just by writing∏
j 6=i

n + 1− j

i− j
=

(n + 1)n . . . (n + 1− (i− 1))(n + 1− (i + 1)) . . . 1
i(i− 1) . . . 1 · (−1) . . . (−(n− i))

.

According to these small observations, we can write

f(n + 1) =
n∑

i=0

i

i + 1
· (n + 1)!
(n + 1− i) · i! · (n− i)!

(−1)n−i

=
n∑

i=1

(n + 1)!
(n + 1− i)! · (i− 1)!

(−1)n−i

= (n + 1)
n∑

i=1

(
n

i− 1

)
(−1)n−i = (n + 1)

n−1∑
i=0

(
n

i

)
(−1)n+1−i.

And we have arrived at a familiar formula: the binomial theorem.

According to this,
n−1∑
i=0

(
n

i

)
(−1)n+1−i = −

(
n∑

i=0

(
n

i

)
(−1)n−i − 1

)
= 1.

This shows that f(n + 1) = n + 1.

The first example was straightforward because we didn’t find any

difficulties after finding the idea. It’s not the case with the following

problem.

Example 2. Let F1 = F2 = 1, Fn+2 = Fn + Fn+1 and let f be a

polynomial of degree 990 such that f(k) = Fk for k ∈ {992, . . . , 1982}.
Show that f(1983) = F1983 − 1.

Titu Andreescu, IMO 1983 Shortlist
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Solution. So, we have f(k + 992) = Fk+992 for k = 0, 990 and we

need to prove that f(992 + 991) = F1983 − 1. This simple observation

shows that we don’t have to bother too much with k + 992, since we

could work as well with the polynomial g(x) = f(x+992), which also has

degree 990. Now, the problem becomes: if g(k) = Fk+992, for k = 0, 990,

then g(991) = F1983 − 1. But we know how to compute g(991). Indeed,

looking again at the previous problem, we find that

g(991) =
990∑
k=0

g(k)
(

991
k

)
(−1)k =

990∑
k=0

(
991
k

)
Fk+992(−1)k

which shows that we need to prove the identity
990∑
k=0

(
991
k

)
Fk+992(−1)k = F1983 − 1.

This isn’t so easy, but with a little bit of help it can be done. The

device is: never complicate things more than necessary! Indeed, we could

try to establish a more general identity that could be proved by induc-

tion. But why, since it can be done immediately with the formula for

Fn. Indeed, we know that

Fn =
an − bn

√
5

,

where a =
√

5 + 1
2

and b =
1−

√
5

2
. Having this in mind, we can of

course try a direct approach:
990∑
k=0

(
991
k

)
Fk+992(−1)k

=
1√
5

[
990∑
k=0

(
991
k

)
ak+992(−1)k −

990∑
k=0

(
991
k

)
bk+992(−1)k

]
.

But using the binomial theorem, the above sums vanish:
990∑
k=0

(
991
k

)
ak+992(−1)k = a992

990∑
k=0

(
991
k

)
(−a)k = a992[(1− a)991 + a991].
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Since a2 = a + 1, we have

a992[(1− a)991 + a991] = a(a− a2)991 + a1983 = −a + a1983.

Since in all this argument we have used only the fact that a2 = a+1

and since b also verifies this relation, we find that

990∑
k=0

(
991
k

)
Fk+992(−1)k =

1√
5
(a1983 − b1983 − a + b)

=
a1983 − b1983

√
5

− a− b√
5

= F1983 − 1.

And this is how with the help of a precious formula and with some

smart computations we could solve this problem and also find a nice

property of the Fibonacci numbers.

The following example is a very nice problem proposed for IMO 1997.

Here, the following steps after using Lagrange’s Interpolation formula are

even better hidden in some congruencies. It is the typical example of a

good Olympiad problem: no matter how much the contestant knows in

that field, it causes great difficulties in solving.

Example 3. Let f be a polynomial with integer coefficients and let

p be a prime such that f(0) = 0, f(1) = 1 and f(k) = 0, 1 (mod p) for

all positive integer k. Show that deg f is at least p− 1.

IMO Shortlist 1997

Solution. As usual, such a problem should be solved indirectly,

arguing by contradiction. So, let us suppose that deg f ≤ p − 2. Then,

using the Interpolation formula, we find that

f(x) =
p−1∑
k=0

f(k)
∏
j 6=k

x− j

k − j
.
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Now, since deg f ≤ p − 2, the coefficient of xp−1 in the right-hand

side of the identity must be zero. Consequently, we have

p−1∑
k=0

(−1)p−k−1

k!(p− 1− k)!
f(k) = 0.

From here we have one more step. Indeed, let us write the above

relation in the form

p−1∑
k=0

(−1)k

(
p− 1

k

)
f(k) = 0

and let us take this equality modulo p. Since

k!
(

p− 1
k

)
= (p− k)(p− k + 1) . . . (p− 1) ≡ (−1)kk! (mod p)

we find that (
p− 1

k

)
≡ (−1)k (mod p)

and so
p−1∑
k=0

(−1)k

(
p− 1

k

)
f(k) ≡

p−1∑
k=0

f(k) (mod p).

Thus,
p−1∑
k=0

f(k) ≡ 0 (mod p),

which is impossible, since f(k) ≡ 0, 1 (mod p) for all k and not all of

the numbers f(k) have the same remainder modulo p (for example, f(0)

and f(1)). This contradiction shows that our assumption was wrong and

the conclusion follows.

It’s time now for some other nice identities, where polynomials do

not appear at first sight. We will see how some terrible identities are

simple consequences of the Lagrange Interpolation formula.
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Example 4. Let a1, a2, . . . , an be pairwise distinct positive integers.

Prove that for any positive integer k the number
n∑

i=1

ak
i∏

j 6=i

(ai − aj)
is an

integer.

Great Britain

Solution. Just by looking at the expression, we recognize the La-

grange Interpolation formula for the polynomial f(x) = xk. But we may

have some problems when the degree of this polynomial is greater than

or equal to n. But this can be solved by working with the remainder of

f modulo g(x) = (x − a1)(x − a2) . . . (x − an). So, let us proceed, by

writing f(x) = g(x)h(x) + r(x), where r is a polynomial of degree at

most n − 1. This time we don’t have to worry, since the formula works

and we obtain

r(x) =
n∑

i=1

r(ai)
∏
j 6=i

x− aj

ai − aj
.

Now, we need three observations. The first one is r(ai) = ak
i , the sec-

ond one is that the polynomial r has integer coefficients and the third one

is that
n∑

i=1

ak
i∏

j 6=i

(ai − aj)
is just the coefficient of xn−1 in the polynomial

n∑
i=1

r(ai)
∏
j 6=i

x− aj

ai − aj
. All these observations are immediate. Combining

them, we find that
n∑

i=1

ak
i∏

j 6=i

(ai − aj)
is the coefficient of xn−1 in r, which

is an integer. Thus, not only that we have solved the problem, but we

also found a rapid way to compute the sums of the form
n∑

i=1

ak
i∏

j 6=i

(ai − aj)
.
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The following two problems we are going to discuss refer to combi-

natorial sums. If the first one is relatively easy to prove using a combi-

natorial argument (it is a very good exercise for the reader to find this

argument), the second problem is much more difficult. But we will see

that both are immediate consequences of the Interpolation Formula.

Example 5. Let f(x) =
n∑

k=0

akx
n−k. Prove that for any non-zero

real number h and any real number A we have
n∑

k=0

(−1)n−k

(
n

k

)
f(A + kh) = a0 · hn · n!.

Alexandru Lupas

Solution. Since this polynomial has degree at most n, we have no

problems in applying the Interpolation formula

f(x) =
n∑

k=0

f(Akh)
∏
j 6=k

x−A− jh

(k − j)h
.

Now, let us identify the leading coefficients in both polynomials that

appear in the equality. We find that

a0 =
n∑

k=0

f(A + kh)
1∏

j 6=k

[(k − j)h]
=

1
n!hn

n∑
k=0

(−1)n−k

(
n

k

)
f(A + kh),

which is exactly what we had to prove. Simple and elegant! Notice that

the above problem implies the well-known combinatorial identities
n∑

k=0

(−1)k

(
n

k

)
kp = 0

for all p ∈ {0, 1, 2, . . . , n− 1} and
n∑

k=0

(−1)n−k

(
n

k

)
kn = n!.

As we promised, we will discuss a much more difficult problem. The

reader might say after reading the solution: but this is quite natural! Yes,

it is natural for someone who knows very well the Lagrange Interpolation
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formula and especially for someone who thinks that using it could lead

to a solution. Unfortunately, this isn’t always so easy.

Example 6. Prove the identity
n∑

k=0

(−1)n−k

(
n

k

)
kn+1 =

n(n + 1)!
2

.

Solution. We take the polynomial f(x) = xn (why don’t we take the

polynomial f(x) = xn+1? Simply because (−1)n−k

(
n

k

)
appears when

writing the formula for a polynomial of degree at most n) and we write

the Interpolation Formula

xn =
n∑

k=0

kn x(x− 1) . . . (x− k − 1)(x− k + 1) . . . (x− n)
(n− k)!k!

(−1)n−k

Now, we identify the coefficient of xn−1 in both terms. We find that

0 =
n∑

k=0

(−1)n−k

(
n

k

)
kn(1 + 2 + · · ·+ n− k).

And now the problem is solved, since we found that
n∑

k=0

(−1)n−k

(
n

k

)
kn+1 =

n(n + 1)
2

n∑
k=0

(−1)n−k

(
n

k

)
kn

and we also know that
n∑

k=0

(−1)n−k

(
n

k

)
kn = n!

from the previous problem.

Were Lagrange interpolation formula good only to establish identi-

ties and to compute values of polynomials, it wouldn’t have been such

a great discovery. Of course it is not the case, it plays a fundamental

role in analysis. Yet, we are not going to enter this field and we prefer to

concentrate on another elementary aspect of this formula and see how

it can help us establish some remarkable inequalities. And some of them

will be really tough.
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We begin with a really difficult inequality, in which the interpola-

tion formula is really well hidden. Yet, the denominators give sometimes

precious indications...

Example 7. Prove that for any real numbers x1, x2, . . . , xn ∈ [−1, 1]

the following inequality is true:

n∑
i=1

1∏
j 6=i

|xj − xi|
≥ 2n−2.

Iran Olympiad

Solution. The presence of
∏
j 6=i

|xj −xi| is the only hint to this prob-

lem. But even if we know it, how do we choose the polynomial? The

answer is simple: we will choose it to be arbitrary and only in the end

we will decide which is one is optimal. So, let us proceed by taking

f(x) =
n−1∑
k=0

akx
k an arbitrary polynomial of degree n− 1. Then we have

f(x) =
n∑

k=1

f(xk)
∏
j 6=k

x− xj

xk − xj
.

Combining this with the triangular inequality , we arrive at a new

inequality

|f(x)| ≤
n∑

k=1

|f(xk)|
∏
j 6=k

∣∣∣∣ x− xj

xk − xj

∣∣∣∣ .
Only now comes the beautiful idea, which is in fact the main step.

From the above inequality we find that

∣∣∣∣ f(x)
xn−1

∣∣∣∣ ≤ n∑
k=1

|f(xk)|∏
j 6=k

|xk − xj |

∣∣∣∣∣∣
∏
j 6=k

(
1− xj

x

)∣∣∣∣∣∣
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and since this is true for all non-zero real numbers x, we may take the

limit when x →∞ and the result is pretty nice

|an−1| ≤
n∑

k=1

|f(xk)|∏
j 6=k

|xk − xj |
.

This is the right moment to decide what polynomial to take. We

need a polynomial f such that |f(x)| ≤ 1 for all x ∈ [−1, 1] and such

that the leading coefficient is 2n−2. This time our mathematical culture

will decide. And it says that Chebyshev polynomials are the best, since

they are the polynomials with the minimum deviation on [−1, 1] (the

reader will wait just a few seconds and he will see a beautiful proof of

this remarkable result using Lagrange’s interpolation theorem). So, we

take the polynomial defined by f(cos x) = cos(n− 1)x. It is easy to see

that such a polynomial exists, has degree n − 1 and leading coefficient

2n−2, so this choice solves our problem.

Note also that the inequality |an−1| ≤
n∑

k=1

|f(xk)|∏
j 6=k

|xk − xj |
can be

proved by identifying the leading coefficients in the identity

f(x) =
n∑

k=1

f(xk)
∏
j 6=k

x− xj

xk − xj

and then using the triangular inequality.

The following example is a fine concoct of ideas. The problem is not

simple at all, since many possible approaches fail. Yet, in the frame-

work of the previous problems and with the experience of Lagrange’s

interpolation formula, it is not so hard after all.

Example 8. Let f ∈ R[X] be a polynomial of degree n with leading

coefficient 1 and let x0 < x1 < x2 < · · · < xn be some integers. Prove

154



that there exists k ∈ {1, 2, . . . , n} such that

|f(xk)| ≥
n!
2n

.

Crux Matematicorum

Solution. Naturally (but would this be naturally without having

discussed so many related problems before?), we start with the identity

f(x) =
n∑

k=0

f(xk)
∏
j 6=k

x− xj

xk − xj
.

Now, repeating the argument in the previous problem and using the

fact that the leading coefficient is 1, we find that
n∑

k=0

|f(xk)|∏
j 6=k

|xk − xj |
≥ 1.

It is time to use that we are dealing with integers. This will allow us

to find a good inferior bound for
∏
j 6=k

|xk − xj | ≥ 1. This is easy, since

∏
j 6=k

|xk−xj | = (xk−x0)(xk−x1) . . . (xk−xk−1)(xk+1−xk) . . . (xn−xk)

≥ k(k − 1)(k − 2) . . . 1 · 1 · 2 . . . (n− k) = k!(n− k)!.

And yes, we are done, since using these inequalities, we deduce that
n∑

k=0

|f(xk)|
k!(n− k)!|

≥ 1.

Now, since
n∑

k=0

1
k!(n− k)!

=
1
n!

n∑
k=0

(
n

k

)
=

2n

n!
,

it follows trivially that

|f(xk)| ≥
n!
2n

.

We shall discuss one more problem before entering in a more detailed

study of Chebyshev polynomials and their properties, a problem given
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in the Romanian mathematical Olympiad and which is a very nice ap-

plication of Lagrange’s interpolation formula. It is useless to say that it

follows trivially using a little bit of integration theory and Fourier series.

Example 9. Prove that for any polynomial f of degree n and with

leading coefficient 1 there exists a point z such that

|z| = 1 and |f(z)| ≥ 1.

Marius Cavachi, Romanian Olympiad

Solution. Of course, the idea is always the same, but this time

it is necessary to find the good points in which we should write the

interpolation formula. As usual, we shall be blind and we shall try to

find these points. Till then, let us call them simply x0, x1, x2, . . . , xn and

write
n∑

k=0

|f(xk)|∏
j 6=k

|xk − xj |
≥ 1.

This inequality was already proved in the two problems above. Now,

consider the polynomial

g(x) =
n∏

i=0

(x− xi).

We have then

|g′(xi)| =

∣∣∣∣∣∣
∏
j 6=i

(xi − xj)

∣∣∣∣∣∣ .
Now, of course we would like, if possible, to have |xi| = 1 and also

n∑
k=0

1
|g′(xk)|

≤ 1. In this case it would follow from
n∑

k=0

|f(xk)|∏
j 6=k

|xk − xj |
≥ 1

that at least one of the numbers |f(xk)| is at least equal to 1 and the

problem would be solved. Thus, we should find a monic polynomial g of

degree n + 1 with all roots of modulus 1 and such that
n∑

k=0

1
|g′(xk)|

≤ 1.
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This is trivial: it suffices of course to consider g(x) = xn+1 − 1. The

conclusion follows.

We have an explanation to give: we said the problem follows trivially

with a little bit of integration theory tools. Indeed, if we write f(x) =
n∑

k=0

akx
k then one can check with a trivial computation that

ak =
1
2π

∫ 2π

0
f(eit)e−iktdt

and from here the conclusion follows since we will have

2π =
∣∣∣∣∫ 2π

0
f(eit)e−intdt

∣∣∣∣ ≤ ∫ 2π

0
|f(eit|dt ≤ 2π max

|z|=1
|f(z)|.

Of course, knowing already this in 10-th grade (the problem was

given to students in 10-th grade) is not something common...

The next problems will be based on a very nice identity that will

allow us to prove some classical results about norms of polynomials,

to find the polynomials having minimal deviation on [−1, 1] and also to

establish some new inequalities. In order to do all this, we need two quite

technical lemmas, which is not difficult to establish, but very useful.

Lemma 1. If we put tk = cos
kπ

n
, 0 ≤ k ≤ n, then

f(x) =
n∏

k=0

(x− tk) =
√

x2 − 1
2n

[(x +
√

x2 − 1)n − (x−
√

x2 − 1)n].

Proof. The proof is simple. Indeed, if we consider

g(x) =
√

x2 − 1
2n

[(x +
√

x2 − 1)n − (x−
√

x2 − 1)n],

using the binomial formula we can establish immediately that it is a

polynomial. Moreover, from the obvious fact that lim
x→∞

g(x)
xn+1

= 1, we

deduce that it is actually a monic polynomial of degree n + 1. The fact
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that g(tk) = 0 for all 0 ≤ k ≤ n is easily verified using Moivre’s formula.

All this proves the first lemma.

A little bit more computational is the second lemma.

Lemma 2. The following relations are true:

i)
∏
j 6=k

(tk − tj) =
(−1)kn

2n−1
if 1 ≤ k ≤ n− 1;

ii)
n∏

j=1

(t0 − tj) =
n

2n−2
;

iii)
n−1∏
j=0

(tn − tj) =
(−1)nn

2n−2
.

Proof. Simple computations, left to the reader, allow us to write:

f ′(x) =
n

2n
[(x +

√
x2 − 1)n + (x−

√
x2 − 1)n]

+
x

2n
√

x2 − 1
[(x +

√
x2 − 1)n − (x−

√
x2 − 1)n].

Using this formula and Moivre’s formula we easily deduce i). To

prove ii) and iii) it suffices to compute lim
x→±1

f ′(x), using the above for-

mula. We leave the computations to the reader.

Of course, the reader hopes that all these computations will have a

honourable purpose. He’s right, since these lemmas will allow us to prove

some very nice results. The first one is a classical theorem of Chebyshev,

about minimal deviation of polynomials on [−1, 1].

Example 10. (Chebyshev theorem) Let f ∈ R[X] be a monic poly-

nomial of degree n. Then

max
x∈[−1,1]

|f(x)| ≥ 1
2n−1

and this bound cannot be improved.

Solution. Using again the observation from problem 7, we obtain

the identity:

I =
n∑

k=0

f(tk)
∏
j 6=k

1
tk − tj

.

158



Thus, we have

1 ≤ max
0≤k≤n

|f(tk)|
n∑

k=0

1∣∣∣∣∣∣
∏
j 6=k

(tk − tj)

∣∣∣∣∣∣
.

Now, it suffices to apply lemma 2 to conclude that we actually have
n∑

k=0

1∣∣∣∣∣∣
∏
j 6=k

(tk − tj)

∣∣∣∣∣∣
= 2n−1.

This shows that max
x∈[−1,1]

|f(x)| ≥ 1
2n−1

and so the result is proved.

To prove that this result is optimal, it suffices to use the polynomial

Tn(x) = cos(n arccos(x)). It is an easy exercise to prove that this is

really a polynomial (called the nth polynomial of Chebyshev of the first

kind) and that it has leading coefficient 2n−1 and degree n. Then the

polynomial
1

2n−1
Tn is monic of degree n and

max
x∈[−1,1]

∣∣∣∣ 1
2n−1

Tn(x)
∣∣∣∣ = 1

2n−1
.

There are many other proof of this result , many of them are much

easier, but we chosen this one because it shows the power of Lagrange

interpolation theory. Not to say that the use of the two lemmas allowed

us to prove that the inequality presented in example 7 is actually the

best.

Some years ago, Walther Janous presented in Crux the following

problem as open problem. It is true that it is a very difficult one, but

here is a very simple solution using the results already achieved.

Example 11. Suppose that a0, a1, . . . , an are real numbers such that

for all x ∈ [−1, 1] we have

|a0 + a1x + · · ·+ anxn| ≤ 1.

159



Then for all x ∈ [−1, 1] we also have

|an + an−1x + · · ·+ a0x
n| ≤ 2n−1.

Walther Janous, Crux Matematicorum

Solution. Actually, we are going to prove a stronger result, that is:

Lemma. Denote

‖f‖ = max
x∈[−1,1]

|f(x)|.

Then for any polynomial f ∈ R[X] of degree n the following inequal-

ity is satisfied:

|f(x)| ≤ |Tn(x)| · ‖f‖ for all |x| ≥ 1.

Proof. Using Lagrange’s interpolation formula and modulus in-

equality, we deduce that for all u ∈ [−1, 1] we have:∣∣∣∣f (1
u

)∣∣∣∣ ≤ 1
|u|n

‖f‖
n∑

k=0

∏
j 6=k

1− tju

|tk − tj |
.

The very nice idea is to use now again Lagrange interpolation for-

mula, this time for the polynomial Tn. We shall then have∣∣∣∣Tn

(
1
u

)∣∣∣∣ = 1
|u|n

∣∣∣∣∣∣
n∑

k=0

(−1)k
∏
j 6=k

1− utj
tk − tj

∣∣∣∣∣∣ = 1
|u|n

n∑
k=0

∏
j 6=k

1− utj
|tk − tj |

(the last identity being ensured by lemma 2). By combining the two

results, we obtain∣∣∣∣f (1
u

)∣∣∣∣ ≤ ∣∣∣∣Tn

(
1
u

)∣∣∣∣ ‖f‖ for all u ∈ [−1, 1]

and the conclusion follows.

Coming back to the problem and considering the polynomial f(x) =
n∑

k=0

akx
k, the hypothesis says that ‖f‖ ≤ 1 and so by the lemma we have

|f(x)| ≤ |Tn(x)| for all |x| ≥ 1.
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We will then have for all x ∈ [−1, 1]:

|an + an−1x + · · ·+ a0x
n| =

∣∣∣∣xnf

(
1
x

)∣∣∣∣ ≤ ∣∣∣∣xnTn

(
1
x

)∣∣∣∣ .
It suffices to prove that∣∣∣∣xnTn

(
1
x

)∣∣∣∣ ≤ 2n−1,

which can be also written as

(1 +
√

1− x2)n + (1−
√

1− x2)n ≤ 2n.

But this inequality is very easy to prove: just set a =
√

1− x2 ∈ [0, 1]

and observe that h(a) = (1−a)n +(1+a)n is a convex function on [0, 1],

thus its superior bound is attained in 0 or 1 and there the inequality is

trivially verified. Therefore we have

|an + an−1x + · · ·+ a0x
n| ≤ 2n−1

and the problem is solved.

We end this topic with a very difficult problem, that refines a prob-

lem given in a Japanese mathematical Olympiad in 1994. The problem

has a nice story: given initially in an old Russian Olympiad, it asked to

prove that

max
x∈[0,2]

n∏
i=1

|x− ai| ≤ 108n max
x∈[0,1]

n∏
i=1

|x− ai|

for any real numbers a1, a2, . . . , an. The Japanese problems asked only

to prove the existence of a constant that could replace 108. A brutal

choice of points in Lagrange interpolation theorem gives a better bound

of approximately 12 for this constant. Recent work by Alexandru Lupas

reduces this bound to 1 + 2
√

6. In the following, we present the optimal

bound.
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Example 12. For any real numbers a1, a2, . . . , an, the following in-

equality holds:

max
x∈[0,2]

n∏
i=1

|x− ai| ≤
(3 + 2

√
2)n + (3− 2

√
2)n

2
max

x∈[0,1]

n∏
i=1

|x− ai|.

Gabriel Dospinescu

Solution. Let us denote

‖f‖[a,b] = max
x∈[a,b]

|f(x)|

for a polynomial f and let, for simplicity,

cn =
(3 + 2

√
2)n + (3− 2

√
2)n

2
.

We thus need to prove that ‖f‖[0,2] ≤ cn‖f‖[0,1] where

f(x) =
n∏

i=1

(x− ai).

We shall prove that this inequality is true for any polynomial f ,

which allows us to suppose that ‖f‖[0,1] = 1. We shall prove that for

all x ∈ [1, 2] we have |f(x)| ≤ xn. Let us fix x ∈ [1, 2] and consider the

numbers xk =
1 + tk

2
. Using Lagrange interpolation formula, we deduce

that

|f(x)| ≤
n∑

k=0

∣∣∣∣∣∣
∏
j 6=k

x− xk

xk − xj

∣∣∣∣∣∣ =
n∑

k=0

∏
j 6=k

x− xj

|xk − xj |

≤
n∑

k=0

∏
j 6=k

2− xj

|xk − xj |
=

n∑
k=0

∏
j 6=k

3− tj
|tk − tj |

.

Using lemma 2, we can write
n∑

k=0

∏
j 6=k

3− tj
|tk − tj |

=
2n−1

n

n−1∑
k=1

∏
j 6=k

(3− tj)

+
2n−2

n

n−1∏
j=0

(3− tj) +
n∏

j=1

(3− tj)

 .
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Using again the two lemmas, we obtain:

n

2n
[(3 + 2

√
2)n + (3− 2

√
2)n] +

3
2n+1

√
2
[(3 + 2

√
2)n − (3− 2

√
2)n]

=
n−1∑
k=1

∏
j 6=k

(3− tj) +
n−1∏
j=0

(3− tj) +
n∏

j=1

(3− tj).

All we have to do now is to compute

n−1∏
j=0

(3− tj) +
n∏

j=1

(3− tj) = 6
n−1∏
j=1

(3− tj).

But using lemma 1, we deduce immediately that

n−1∏
j=1

(3− tj) =
1

2n+1
√

2
[(3 + 2

√
2)n − (3− 2

√
2)n].

Putting all these observations together and making a small compu-

tation, that we let to the reader, we easily deduce that |f(x)| ≤ cn. This

proves that ‖f‖[0,2] ≤ cn‖f‖[0,1] and solves the problem.

Problems for training

1. A polynomial of degree 3n takes the value 0 at 2, 5, 8, . . . , 3n− 1,

the value 1 at 1, 4, 7, . . . , 3n − 2 and the value 2 at 0, 3, 6, . . . , 3n. It’s

value at 3n + 1 is 730. Find n.

USAMO 1984

2. A polynomial of degree n verifies p(k) = 2k for all k = 1, n + 1.

Find its value at n + 2.

Vietnam 1988

3. Prove that for any real number a we have the following identity
n∑

k=0

(−1)k

(
n

k

)
(a− k)n = n!.

Tepper’s identity
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4. Find
n∑

k=0

(−1)k

(
n

k

)
kn+2 and

n∑
k=0

(−1)k

(
n

k

)
kn+3.

AMM

5. Prove that
n∑

k=0

xn+1
k∏

j 6=k

(xk − xj)
=

n∑
k=0

xk

and compute
n∑

k=0

xn+2
k∏

j 6=k

(xk − xj)
.

6. Prove the identity

n∑
k=1

(−1)k−1

(
n

k

)
k

(n− k)n = nn
n∑

k=2

1
k
.

Peter Ungar, AMM E 3052

7. Let a, b, c be real numbers and let f(x) = ax2 + bx + c such that

max{|f(±1)|, |f(0)|} ≤ 1. Prove that if |x| ≤ 1 then

|f(x)| ≤ 5
4

and
∣∣∣∣x2f

(
1
x

)∣∣∣∣ ≤ 2.

Spain, 1996

8. Let f ∈ R[X] a polynomial of degree n that verifies |f(x)| ≤ 1 for

all x ∈ [0, 1], then ∣∣∣∣f (− 1
n

)∣∣∣∣ ≤ 2n+1 − 1.

9. Let a, b, c, d ∈ R such that |ax3+bx2+cx+d| ≤ 1 for all x ∈ [−1, 1].

What is the maximal value of |c|? Which are the polynomials in which

the maximum is attained?

Gabriel Dospinescu
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10. Let a ≥ 3 be a real number and p be a real polynomial of degree

n. Prove that

max
i=0,n+1

|ai − p(i)| ≥ 1.

India, 2001

11. Find the maximal value of the expression a2 + b2 + c2 if |ax2 +

bx + c| ≤ 1 for all x ∈ [−1, 1].

Laurentiu Panaitopol

12. Let a, b, c, d ∈ R such that |ax3 + bx2 + cx + d| ≤ 1 for all

x ∈ [−1, 1]. Prove that

|a|+ |b|+ |c|+ |d| ≤ 7.

IMO Shortlist, 1996

13. Let A =
{

p ∈ R[X]| deg p ≤ 3, |p(±1)| ≤ 1,

∣∣∣∣p(±1
2

)∣∣∣∣ ≤ 1
}

.

Find sup
p∈A

max
|x|≤1

|p′′(x)|.

IMC, 1998

14. a) Prove that for any polynomial f having degree at most n, the

following identity is satisfied:

xf ′(x) =
n

2
f(x) +

1
n

n∑
k=1

f(xzk)
2zk

(1− zk)2
,

where zk are the roots of the polynomial |Xn + 1.

b) Deduce Bernstein’s inequality: ‖f ′‖ ≤ n‖f‖ where

‖f‖ = max
|x|≤1

|f(x)|.

P.J. O’Hara, AMM

15. Define F (a, b, c) = max
x∈[0,3]

|x3 − ax2 − bx − c|. What is the least

possible value of this function over R3?

China TST 2001
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HIGHER ALGEBRA IN COMBINATORICS

Till now, we have seen numerous applications of analysis and higher

algebra in number theory and algebra. It is time to see the contribution

of this ”non-elementary mathematics” to combinatorics. It is quite hard

to imagine that behind a simple game, such as football for example

or behind a quotidian situation such as handshakes there exists such

complicated machinery, but this happens sometimes and we will prove it

in the next. For the beginning of the discussion, the reader doesn’t need

any special knowledge, just imagination and the most basic properties

of the matrices, but, as soon as we advance, things change. Anyway,

the most important fact is not the knowledge, but the ideas and, as we

will see, it is not easy to discover that ”non-elementary” fact that hides

after a completely elementary problem. Since we have clarified what is

the purpose of the unit, we can begin the battle.

The first problem we are going to discuss is not classical, but it is easy

and a very nice application of how linear-algebra can solve elementary

problems. Here it is.

Example 1. Let n ≥ 3 and let An, Bn be the sets of all even,

respectively, odd permutations of the set {1, 2, . . . , n}. Prove the equality

∑
σ∈An

n∑
i=1

|i− σ(i)| =
∑

σ∈Bn

n∑
i=1

|i− σ(i)|.

Nicolae Popescu, Gazeta Matematica

Solution. Writing the difference

∑
σ∈An

n∑
i=1

|i− σ(i)| −
∑

σ∈Bn

n∑
i=1

|i− σ(i)|

as ∑
σ∈Sn

ε(σ)
n∑

i=1

|i− σ(i)| = 0,
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where

ε(σ) =

{
1, if σ ∈ An

−1, if σ ∈ Bn

reminds us about the formula

det A =
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) . . . anσ(n).

We have taken here Sn = An ∪ Bn. But we don’t have any product

in our sum! That is why we will take an arbitrary positive number a and

we will consider the matrix A = (a|i−j|)1≤i,j≤n. This time,

det A =
∑
σ∈Sn

(−1)ε(α)a|1−σ(1)| . . . a|−nσ(n)|

=
∑

σ∈An

a

n∑
i=1

|i−σ(i)|
−
∑

σ∈Bn

a

n∑
i=1

|i−σ(i)|

This is how we have obtained the identity∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 . . . xn−2 xn−1

x 1 x . . . xn−3 xn−2

x2 x 1 . . . xn−4 xn−3

. . . . . . . . . . . . . . . . . .

xn−1 xn−2 . . . . . . x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
σ∈Sn

σ pară

x

n∑
i=1

|i−σ(i)|
−

∑
σ∈Sn

σ impară

x

n∑
i=1

|i−σ(i)|
. (1)

Anyway, we still do not have the desired difference. What can we do

to obtain it? The most natural way is to derive the last relation, which is

nothing else than a polynomial identity, and then to take x = 1. Before
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doing that, let us observe that the polynomial∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x x2 . . . xn−2 xn−1

x 1 x . . . xn−3 xn−2

x2 x 1 . . . xn−4 xn−3

. . . . . . . . . . . . . . . . . .

xn−1 xn−2 . . . . . . x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is divisible by (x− 1)2. This can be easily seen by subtracting the first

line from the second and the third one and taking from each of these

line x − 1 as common factor. Thus, the derivative of this polynomial is

a polynomial divisible by x − 1, which shows that after we derive the

relation (1) and take x = 1, in the left-hand side we will obtain 0. Since

in the right-hand side we obtain exactly

∑
σ∈An

n∑
i=1

|i− σ(i)| −
∑

σ∈Bn

n∑
i=1

|i− σ(i)|

the identity is established.

Here is another nice application of this trick. We have seen how many

permutation do not have a fixed point. The question that arises is how

many of them are even. Here is a direct answer to the question, using

determinants.

Example 2. Find the number of even permutations of the set

{1, 2, . . . , n} that do not have fixed points.

Solution. Let us consider Cn, Dn, respectively, the sets of even and

odd permutations of the set {1, 2, . . . , n}, that do not have any fixed

points. We know how to find the sum |Cn| + |Dn|. We have seen it in

the unit ”Principiul includerii si excluderii” that it is equal to

n!
(

1− 1
1!

+
1
2!
− · · ·+ (−1)n

n!

)
.
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Hence if we manage to compute the difference |Cn| − |Dn|, will be

able to answer to the question. If we write

|Cn| − |Dn| =
∑

σ∈An
σ(i) 6=i

1−
∑

σ∈Bn
σ(i) 6=i

1,

we observe that this reduces to computing the determinant of the matrix

T = (tij)1≤i,j≤n, where

tij =

{
1, if i 6= j

0, if i = j

That is,

|Cn| − |Dn| =

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 . . . 1

1 0 1 . . . 1

. . . . . . . . . . . . . . .

1 1 1 . . . 0

∣∣∣∣∣∣∣∣∣∣∣
.

But it is not difficult to compute this determinant. Indeed, we add

all columns to the first one and we give n − 1 as common factor, then

we subtract the first column from each of the other columns. The result

is |Cn| − |Dn| = (−1)n−1(n− 1) and the conclusion is quite surprising:

|Cn| =
1
2
n!
(

1− 1
2!

+
1
3!
− · · ·+ (−1)n−2

(n− 2)!

)
+ (−1)n−1(n− 1).

We will focus in the next problems on a very important combina-

torial tool, that is the incidence matrix (cum se spune la matricea de

incidenta?). What is this? Suppose we have a set X = {x1, x2, . . . , xn}
and X1, X2, . . . , Xk a family of subsets of X. Now, define the matrix

A = (aij)i=1,n
j=1,k

, where

aij =

{
1, if xi ∈ Xj

0, if xi 6∈ Xj
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This is the incidence matrix of the family X1, X2, . . . , Xk and the

set X. In many situations, computing the product tA · A helps us to

modelate algebraically the conditions and the conclusions of a certain

problem. From this point, the machinery activates and the problem is

on its way of solving.

Let us discuss first a classical problem, though a difficult one. It ap-

peared in USAMO 1979, Tournament of the Towns 1985 and in Bulgar-

ian Spring Mathematical Competition 1995. This says something about

the classical character and beauty of this problem.

Example 3. Let A1, A2, . . . , An+1 be distinct subsets of the set

{1, 2, . . . , n}, each of which having exactly three elements. Prove that

there are two distinct subsets among them that have exactly one point

in common.

Solution. Of course, we argue by contradiction and suppose that

|Ai ∩ Aj | ∈ {0, 2} for all i 6= j. Now, let T be the incidency matrix of

the family A1, A2, . . . , An+1 and compute the product

tT · T =



n∑
k=1

t2k1

n∑
k=1

tk1tk2 . . .

n∑
k=1

tktkn+1

. . . . . . . . . . . .
n∑

k=1

tkn+1tk1

n∑
k=1

tkn+11tk2 . . .

n∑
k=1

t2kn+1

 .

But we have of course

n∑
k=1

x2
ki = |Ai| = 3

and
n∑

k=1

xkixkj = |Ai ∩Aj | ∈ {0, 2}.
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Thus, considered in the field (R2,+, ·), we have

tT · T =


1̂ 0̂ . . . 0̂ 0̂

. . . . . . . . . . . . . . .

0̂ 0̂ . . . 0̂ 1̂

 ,

where X is the matrix having as elements the residues classes of the

elements of the matrix X. Since of course det X = det X, the previous

relation shows that det tT · T is odd, hence non-zero. This means that
tTyT is an invertible matrix of size n+1, thus rank tT ·T = n+1 which

contradicts the inequality rank tT ·T ≤ rankT ≤ n. This shows that our

assumption was wrong and there exist indeed indices i 6= j such that

|Ai ∩Aj | = 1.

The following problem is very difficult to solve by elementary means,

but the solution using linear-algebra is straightforward.

Example 4. Let n be an even number and A1, A2, . . . , An be distinct

subsets of the set {1, 2, . . . , n}, each of them having an even number of

elements. Prove that among these subsets there are two having an even

number of elements in common.

Solution. Indeed, if T is the incidency matrix of the family

A1, A2, . . . , An, we obtain as in the previous problem the following rela-

tion

tT · T =


|A1| |A1 ∩A2| . . . |A1 ∩An|
. . . . . . . . . . . .

|An ∩A1| |An ∩A2| . . . |An|

 .

Now, let us suppose that all the numbers |Ai ∩ Aj | are odd and

interpret the above relation in the field (R2,+, ·). We find that

tT · T =


0̂ 1̂ . . . 1̂ 1̂

. . . . . . . . . . . . . . .

1̂ 1̂ . . . 1̂ 0̂

 ,
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which means again that det tT . . . T is odd. Indeed, if we work in

(R2,+, ·), we obtain

∣∣∣∣∣∣∣∣
0̂ 1̂ . . . 1̂ 1̂

. . . . . . . . . . . . . . .

1̂ 1̂ . . . 1̂ 0̂

∣∣∣∣∣∣∣∣ = 1̂.

The technique used is exactly the same as in the second example,

only this time we work in a different field. Note that this is the moment

when we use the hypothesis that n is even. Now, since det tT ·T = det2 T ,

we obtain that detT is also an odd number. Hence we should try to prove

that in fact det T is an even number and the problem will be solved. Just

observe that the sum of elements of the column i of T is |Ai|, hence an

even number. Thus, if we add all lines to the first line, we will obtain

only even numbers on the first line. Since the value of the determinant

doesn’t change under this operation, the conclusion is plain: det T is

an even number. Since a number cannot be both even and odd, our

assumption was wrong and the problem is solved.

Working in a simple field such as (R2,+, ·) can allow us to find quite

interesting solutions. For example, we will discuss the following problem,

used for the IMO preparation of the Romanian IMO team in 2004.

Example 5. The squares of a n×n table are colored with white and

black. Suppose that there exists a non-empty set of lines A such that

any column of the table has an even number of white squares that also

belong to A. Prove that there exists a non-empty set of columns B such

that any line of the table contains an even number of white squares that

also belong to B.

Gabriel Dospinescu
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Solution. This is just the combinatorial translation of the well-

known fact that a matrix T is invertible in a field if and only if its

transpose is also invertible in that field. But this is not that easy to see.

Let us proceed easily. In each white square we write the number 1

and in each black square we put a 0. We thus obtain a binary matrix

T = (tij)1≤i,j≤n. From now on, we work only in (R2,+, ·). Suppose that

A contains the columns a1, a2, . . . , ak. It follows that
k∑

i=1

ta,j = 0 for all

j = 1, n. Now, let us take

xi =

{
1, if i ∈ A

0, if i 6∈ A

It follows that the system
t11z1 + t21z2 + · · ·+ tn1zn = 0

t12z1 + t22z2 + · · ·+ tn2zn = 0

. . .

t1nz1 + t2nz2 + · · ·+ tnmzn = 0

admits the non-trivial solution (x1, x2, . . . , xn). Thus, detT = 0 and

consequently det tT = 0. But this means that the system
u11y1 + u12y2 + · · ·+ u1nyn = 0

u21y1 + u22y2 + · · ·+ u2nyn = 0

. . .

un1y1 + un2y2 + · · ·+ unnyn = 0

also has a non-trivial solution in R2. Now, we take B = {i| yi 6= 0} and

we will clearly have B 6= ∅ and
∑
x∈B

uix = 0, i = 1, n. But this mean that

any line of the table contains an even number of white squares that also

belong to B and the problem is solved.

In the end of this sub-unit, we will discuss a very difficult problem,

in which just knowing the trick of computing tA · A does not suffice. It
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is true that it is one of the main steps, but there are much more things

to do after we compute tA · A. And if for these first problems we have

used only intuitive or well-known properties of the matrices and fields,

this time we need a more sophisticated machinery: the properties of the

characteristic polynomial and eingenvalues of a matrix. It is exactly that

kind of problem that kills you just when we feel most strong.

Example 6. Let S = {1, 2, . . . , n} and A be a family of pairs of

elements from S with the following property: for any i, j ∈ S there exist

exactly m indices k ∈ S for which (i, k), (k, j) ∈ A. Find all possible

values of m,n for which this is possible.

Gabriel Carrol

Solution. This time, it is easy to see what hides after the problem.

Indeed, if we take T = (tij)1≤i,j≤n, where

aij =

{
1, if (i, j) ∈ A

0, otherwise

the existence of the family A reduces to

T 2 =


m m . . . m

m m . . . m

. . . . . . . . . . . .

m m . . . m

 .

So, we must find all values of m,n for which there exist a binary

matrix T such that

T 2 =


m m . . . m

m m . . . m

. . . . . . . . . . . .

m m . . . m

 .
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Let us consider

TB =


m m . . . m

m m . . . m

. . . . . . . . . . . .

m m . . . m

 .

and find the eigenvalues of B. This is not difficult, since if x is an ein-

genvalue, then ∣∣∣∣∣∣∣∣∣∣∣

m− x m . . . m

m m . . . m

. . . . . . . . . . . .

m m . . . m− x

∣∣∣∣∣∣∣∣∣∣∣
.

If we add all columns to the first one and then take the common

factor mn− x, we obtain the equivalent form

(mn− x)

∣∣∣∣∣∣∣∣∣∣∣

1 m . . . m

1 m− x . . . m

. . . . . . . . . . . .

1 m . . . m− x

∣∣∣∣∣∣∣∣∣∣∣
= 0.

In this final determinant, we subtract from each column the first

column multiplied by m and we obtain in the end the equation

xn−1(mn− x) = 0, which shows that the eigenvalues of B are precisely

0, 0, . . . , 0︸ ︷︷ ︸
n−1

,mn. But these are exactly the squares of the eigenvalues of

T . Thus, T has the eingevalues 0, 0, . . . , 0︸ ︷︷ ︸
n−1

,
√

mn, because the sum of the

eingenvalues is nonnegative (being equal to the sum of the elements of

the matrix situated on the main diagonal). Since TrT ∈ R, we find that

mn must be a perfect square. Also, because TrT ≤ n, we must have

m ≤ n.
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Now, let us prove the converse. So, suppose that m ≤ n and mn is

a perfect square and write m = du2, n = dv2. Let us take the matrices

I = (11 . . . 11︸ ︷︷ ︸
dv

), O = (00 . . . 00︸ ︷︷ ︸
dv

).

Now, let us define the circulant matrix

S =



111 . . . 1︸ ︷︷ ︸
u

00 . . . 0︸ ︷︷ ︸
v−u

0 11 . . . 1︸ ︷︷ ︸
u

00 . . . 0︸ ︷︷ ︸
v−u−1

. . .

111 . . . 1︸ ︷︷ ︸
u−1

00 . . . 0︸ ︷︷ ︸
v−u

1


∈ Mv,n({0, 1}).

Finally, we take

A =


S

S

. . .

S

 ∈ Mn({0, 1}).

It is not difficult to see that

A2 =


m m . . . m

m m . . . m

. . . . . . . . . . . .

m m . . . m

 .

The last idea that we present here (but certainly these are not all

the methods of higher mathematics applied to combinatorics) is the use

of vector spaces. Again, we will not insist on complicated notions from

the theory of vector spaces, just the basic notions and theorems. Maybe

the most useful fact is that if V is a vector space of dimension n (that is,

V has a basis of cardinal n), then any n + 1 or more vectors are linearly

dependent. As a direct application, we will discuss the following problem,
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which is very difficult to solve by means of elementary mathematics. Try

first to solve it elementary and you will see how hard it is. The following

example is classical, too, but few people know the trick behind it.

Example 7. Let n be a positive integer and let A1, A2, . . . , An+1

be nonempty subsets of the set {1, 2, . . . , n}. Prove that there ex-

ist nonempty and disjoint index sets I1 = {i1, i2, . . . , ik} and I2 =

{j1, j2, . . . , jm} such that

Ai1 ∪Ai2 ∪ · · · ∪Aik = Aj1 ∪Aj2 ∪ · · · ∪Ajm .

Solution. Let us associate to each subset Ai a vector vi ∈ Rn, where

vi = (x1
i , x

2
i , . . . , x

n
i ) and

xj
i =

{
0, if j ∈ Ai

1, if j 6∈ Ai

Since dim Rn = n, these vectors we have just constructed must be

linearly dependent. So, we can find a1, a2, . . . , an+1 ∈ R, not all of them

0, such that

a1v1a2v2 + · · ·+ an+1vn+1 = 0.

Now, we take I1 = {i ∈ {1, 2, . . . , n + 1}| ai > 0} and I2 = {i ∈
{1, 2, . . . , n+1}| ai < 0}. It is plain that I1, I2 are nonempty and disjoint.

Now, let us prove that
⋃
i∈I1

Ai =
⋃
i∈I2

Ai and the solution will be complete.

Let us take x ∈
⋃
i∈I1

Ai and suppose that x 6∈
⋃
i∈I2

Ai. Then the vectors vi

with i ∈ I2 have zero on their xth component, so the xth component of

the vector a1v1+a2v2+· · ·+an+1vn+1 is
∑
x∈Aj

j∈I1

aj > 0, which is impossible,

since a1v1 +a2v2 + · · ·+an+1vn+1 = 0. This shows that
⋃
i∈I1

Ai ⊂
⋃
i∈I2

Ai.

But the reversed inclusion can be proved in exactly the same way, so we

conclude that
⋃
i∈I1

Ai =
⋃
i∈I2

Ai.
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In the end of this ”non-elementary” discussion, we solve another

problem, proposed for the TST 2004 in Romania, whose idea is also

related to vector spaces.

Example 8. 30 boys and 20 girls are preparing for the 2004 Team

Selection Test. They observed that any two boys have an even number

of common acquaintances among the girls and exactly 9 boys know an

odd number of girls. Prove that there exists a group of 16 boys such that

any girls attending the preparation is known by an even number of boys

from this group.

Gabriel Dospinescu

Solution. Let us consider the matrix A = (aij) where

aij =

{
1, if Bi knows Fj

0, otherwise

We have considered here that B1, B2, . . . , B30 are the boys and

F1, F2, . . . , F20 are the girls. Now, consider the matrix T = A · tA. We

observe that all the elements of the matrix T , except those from the

main diagonal are even (because tij =
20∑

k=1

aikajk is the number of com-

mon acquaintances among the girls of the boys Bi, Bj). The elements on

the main diagonal of T are exactly the number of girls known by each

boy. Thus, if we consider the matrix T in (R2,+, ·), it will be diagonal,

with exactly nine non-zero elements on its main diagonal. From now on,

we will work only in (R2,+, ·). We have seen till now that rankT = 9.

Using Sylvester inequality, it follows that

9 = rankT ≥ rankA + rank tA− 20 = 2rank tA− 20
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hence r = rank tA ≤ 14. Let us consider now the linear system in

(R2,+, ·): 
a11x1 + a21x2 + · · ·+ a301x30 = 0

a12x1 + a22x2 + · · ·+ a302x30 = 0

. . .

a120x1 + a220x2 + · · ·+ a3020x30 = 0

The set of solutions of this system is a vector space of dimension

30 − r ≥ 16. That is why we can choose a solution (x1, x2, . . . , x30) of

the system, having at least 16 components equal to 1̂. Finally, consider

the set M = {i ∈ {1, 2, . . . , 30}| xi = 1̂}. We have proved that |M | ≥ 16

and also
∑
j∈M

aji = 0 for all i = 1, 20. But we observe that
∑
j∈M

aji is just

the number of boys Bk with k ∈ M such that Bk knows Fi. Thus, if we

choose the group of those boys Bk with k ∈ M , then each girl is known

by an even number of boys from this group and the problem is solved.

Problems for training

1. Let p > 2 be an odd prime and let n ≥ 2. For any permutation

σ ∈ Sn, we consider

S(σ) =
n∑

k=1

kσ(k).

Let Aj , Bj , respectively, be the set of even, respectively odd permu-

tations σ for which S(σ) ≡ j (mod p). Prove that n > p if and only if

Aj and Bj have the same number of elements for all j ∈ {0, 1, . . . , p−1}.

Gabriel Dospinescu

2. Let n ≥ 2. Find the greatest number p such that for all k ∈
{1, 2, . . . , p} we have

∑
σ∈An

(
n∑

i=1

if(i)

)k

=
∑

σ∈Bn

(
n∑

i=1

if(i)

)k

,
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where An, Bn are, respectively, the sets of all even, respectively, odd

permutations of the set {1, 2, . . . , n}.

Gabriel Dospinescu

3. Is there in the plane a configuration of 22 circles and 22 points

on their union (the union of their circumferences) such that any circle

contains at least 7 points and any point belongs to at least 7 circles?

Gabriel Dospinescu, Moldova TST 2004

4. Let A1, A2, . . . , Am be distinct subsets of a set A with n ≥ 2 ele-

ments. Suppose that any two of these subsets have exactly one elements

in common. Prove that m ≤ n.

5. The edges of a regular 2n-gon are colored red and blue. A step

consists of recoloring each edge which is the same color as both of its

neighbours in red, and recoloring each other edge in blue. Prove that

after 2n−1 steps all of the edges will be red and show that this need not

hold after fewer steps.

Iran Olympiad, 1998

6. Problema de la Vietnamezi cu cunostintele

7. n ≥ 2 teams compete in a tournament and each team plays against

any other team exactly once. In each game, 2 points are given to the

winner, 1 point for a draw and 0 points for the looser. It is known that

for any subset S of teams, one can find a team (possibly in S) whose

total score in the games with teams in S is odd. Prove that n is even.

D. Karpov, Russian Olympiad,1972

8. On an m × n sheet of paper is drawn a grid dividing the sheet

into unit squares. The two sides of length n are taped together to form a

cylinder. Prove that it is possible to write a real number in each square,

not all zero, so that each number is the sum of the numbers in the

neighboring squares, if and only if there exist integers k, l such that
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n + 1 does not divide k and

cos
2lπ

m
+ cos

kπ

n + 1
=

1
2
.

Ciprian Manolescu, Romanian TST 1998

9. In a contest consisting of n problems, the jury defines the difficulty

of each problem by assigning it a positive integral number of points (the

same number of points may be assigned to different problems). Any

participant who answers the problem correctly receives that number

of points for the problem; any other participant receives 0 points. After

the participants submitted their answers, the jury realizes that given any

ordering of the participants (where ties are not permitted), it could have

defined the problems’ difficulty levels to make that ordering coincide

with the participants’ ranking according to their total scores. Determine,

in terms of n, the maximum number of participants for which such a

scenario could occur.

Russian Olympiad, 2001

10. Let S = {x0, x1, . . . , xn} ⊂ [0, 1] be a finite set of real numbers

with x0 = 0, x1 = 1, such that every distance between pairs of elements

occurs at least twice, except for the distance 1. Prove that S consists of

rational numbers only.

Iran Olympiad

11. Let x1, . . . , xn be real numbers and suppose that the vector space

spanned by xi−xj over the rationals has dimension m. Then the vector

space spanned only by those xi−xj for which xi−xj 6= xk−xl whenever

(i, j) 6= (k, l) also has dimension m.

Strauss theorem
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12. Let A1, A2, . . . , Am some subsets of {1, 2, . . . , n}. Then there are

disjoint sets I, J with non-empty union such that
⋃
i∈I

Ai =
⋃
j∈J

Aj and⋂
i∈I

Ai =
⋂
j∈J

Aj .

Lindstrom theorem

13. There is no partition of the set of edges of the complete graph

on n vertices into (strictly) fewer than n− 1 complete bipartite graphs.

Graham-Pollak theorem

14. Let 2n+1 real numbers with the property that no matter how we

eliminate one of them, the rest of them can be divided into two groups

of n numbers, the sum of the numbers in the two groups being the same.

Then all numbers are equal.

15. In a society, acquaintance is mutual and even more, any two

persons have exactly one friend. Then there is a person that knows all

the others.

Universal friend theorem

16. Let A1, . . . , Am and B1, . . . , Bp subsets of {1, 2, . . . , n} such that

Ai ∩Bj is an odd number for all i, j. Then mp ≤ 2n−1.

Benyi Sudakov

17. Let A1, . . . , An, B1, . . . , Bn ⊂ A = {1, 2, . . . , n} with the proper-

ties:

a) for any nonempty subset T of A, there is i ∈ A such that |Ai ∩T |
is odd.

b) for any i, j ∈ A, Ai and Bj have exactly one common element.

Then prove that B1 = B2 = · · · = Bn.

Gabriel Dospinescu
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18. A symmetric matrix of zeros and ones has only ones on the main

diagonal. Prove that we can find some rows in this matrix such that their

sum is a vector having all of its components odd.

Iran Olympiad
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GEOMETRY AND NUMBERS

Again an apparently paradoxical note!!! Indeed, it may look weird,

but geometry it really useful in number theory and sometimes it can

help proving difficult results with some extremely simple arguments. In

the sequel we are going to show some applications of geometry in num-

ber theory, almost all of them playing around the celebrated Minkowski

theorem. We will see that this theorem gives a very simple criterion for

a nice region (we are also going to explain what we understand by nice)

to have a non-trivial lattice point and the existence of this point will

have important consequences in the theory of representation of numbers

by quadratic forms or in approximation of real numbers with rational

numbers. As usual, we will content to present only a mere introduc-

tion to this field, extremely well developed. The reader will surely have

the pleasure to read some reference books about this fascinating field,

mentioned in the bibliographies.

First of all, let us state the conditions in which we will work and

what is a nice figure. In general, we will work in Rn and we will call

convex body a bounded subset A of Rn which is convex (that is for all

a, b ∈ A and all 0 ≤ t ≤ 1 we have ta+(1− t)b ∈ A), which is symmetric

about the origin (that is, for all x ∈ A we also have −x ∈ A). We will

admit that convex bodies have volumes (just think about it in the plane

or space, which will be practically always used in our applications).

Let us start by proving the celebrated Minkowski’s theorem.

Theorem. (Minkowski) Suppose that A is a convex body in Rn hav-

ing volume strictly greater than 2n. Then there is a lattice point in A

different from the origin.

The proof is surprisingly simple. Indeed, let us start by making a sort

of partition of Rn in cubes of edge 2, having as centers the points that

have all coordinates even numbers. It is clear that any two such cubes will
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have disjoint interiors and that they cover all space. That is why we can

say that the volume of the convex body is equal to the sum of volumes of

the intersections of the body with each cube (since the body is convex,

it is clear that the sum will be finite). But of course, one can bring any

cube into the cube centered around the origin by using a translation by

a vector all of whose coordinates are even. Since translations preserve

volume, we will have now an agglomeration of bodies in the central cube

(the one centered in the origin) and the sum of volumes of all these

bodies is strictly greater that 2n. Necessarily there will be two bodies

which intersect in a point X. Now, look at the cubes where these two

bodies where taken from and look at the points in these cubes that give

by translations the point X. We have found two different points x, y

in our convex body such that x − y ∈ 2Zn. But since A is centrally

symmetric and convex, it follows that
x− y

2
is a lattice point different

from the origin and belonging to A. The theorem is thus proved.

Here is a surprising result that follows directly from this theorem.

Problem 1. Suppose that in each lattice point in space except for

the origin one draws a ball of radius r > 0 (common for all the balls).

Then any line that passes through the origin will intercept a certain ball.

Solution. Let us suppose the contrary and let us consider a very long

cylinder having as axe the line and basis a circle of radius
r

2
. We choose

it sufficiently long to ensure that it will have a volume strictly greater

than 8. This is clearly a convex body in space and using Minkowski’s

theorem we deduce the existence of a non-trivial lattice point in this

cylinder (or on the border). This means that the line will intercept the

ball centered around this point.

Actually, the theorem proved before admits a more general formula-

tion, which is even more useful.
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Theorem 2. (Minkowski) Let A is a convex body in Rn and

v1, v2, . . . , vn some linearly independent vectors in Rn. Also consider

the fundamental parallelepiped P =

{
n∑

i=1

xivi| 0 ≤ xi ≤ 1

}
and de-

note V ol(P ) its volume. Assuming that A has a volume strictly greater

than 2n · V ol(P ), A must contain at least a point of the lattice L =

Zv1 + · · ·+ Zvn different from the origin.

With all these terms, it would seem that this is extremely difficult

to prove. Actually, it follows trivially from the first theorem. Indeed,

by considering the linear application f sending vi into the vector ei =

(0, 0, . . . , 1, 0, . . . , 0) one can easily see that P is sent into the ”normal”

cube in Rn (that is, the set of vectors all of whose components are

between 0 and 1) and that f maps L into Zn. Since the transformation

is linear, it will send A into a convex body of volume
V ol(A)
V ol(P )

> 2n. It

suffices to apply the first theorem to this convex body and to look at

the preimage of the lattice point (in Zn), in order to find a non-trivial

point of A ∩ L. The second theorem is thus proved.

We have already proved that any prime number of the form 4k + 1

is the sum of two squares. Let us prove it differently, using Minkowski’s

theorem.

Problem 2. Any prime number of the form 4k+1 is the sum of two

squares.

Proof. We have already proved that for any prime number of the

form 4k + 1, call it p, one can find a such that p|a2 + 1. Then let us

consider v1 = (p, 0), v2 = (a, 1). Visibly, they are linearly independent

and moreover for any point (x, y) in the lattice L = Zv1 + Zv2 we have

p|x2 + y2. Indeed, there are m,n ∈ Z such that x = mp + na, y = n

and thus x2 + y2 ≡ n2(a2 + 1) ≡ 0 (mod p). Moreover, the area of the

fundamental parallelogram is ‖v1 ∧ v2‖ = p. Next, consider as convex
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body the disc centered in the origin and having as radius
√

2p. Obviously,

its area is strictly greater than four times the area of the fundamental

parallelogram. Thus, there is a point (x, y) different from the origin that

lies in this disc and also in the lattice L = Zv1 + Zv2. For this point we

have p|x2 + y2 and x2 + y2 < 2p, which shows that p = x2 + y2.

Proving that a certain Diophantine equation has no solution is a very

classical problem, but what can we do when we are asked to prove that

a certain equation has solutions? Minkowski’s theorem and in general

geometry of numbers allow quick responses to such problems. Here is an

example, taken from a polish Olympiad.

Problem 3. Consider positive integers such that ac = b2 + b + 1.

Then the equation ax2 − (2b + 1)xy + cy2 = 1 has integer solutions.

Poland Olympiad

Solution. Here is a very quick approach: consider in R2 the set

of points verifying ax2 − (2b + 1)xy + cy2 < 2. A simple computation

shows that it is an elliptical disc having as area
4π√

3
> 4. An elliptical

disc is obviously a convex body and even more this elliptical disc is

symmetric about the origin. Thus, by Minkowski’s theorem we can find

a point of this region different from the origin. Since ac = b2 + b + 1, we

have for all x, y not both 0 the inequality ax2 − (2b + 1)xy + cy2 > 0.

Thus for (x, y) ∈ Z2 \ {(0, 0)} a lattice point of this region, we have

ax2−(2b+1)xy+cy2 = 1 and the existence of a solution of the equation

is proved.

The following problem (as the above one) has a quite difficult elemen-

tary solution. The solution using geometry of numbers is more natural,

but it is not at all obvious how to proceed. Yet... the experience of the

preceding problem should ring a bell.
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Problem 4. Suppose that n is a natural number for which the

equation x2 +xy +y2 = n has rational solutions. Then this equation has

integer solutions as well.

Komal

Solution. Of course, the problem reduces to: if there are integer

numbers a, b, c such that a2 + ab + b2 = c2n, then x2 + xy + y2 = n

has integer solutions. We will assume that a, b, c are non-zero (otherwise

the conclusion follows trivially). Even more, a classical argument allows

to assume that a, b are relatively prime. We will try again to find a

couple of integers (x, y) ∈ Z2 \ {(0, 0)} such that x2 + xy + y2 < 2n

and n divides x2 + xy + y2. In this case we will have x2 + xy + y2 = n

and the conclusion will follow. First, let us look at the region defined

by x2 + xy + y2 < 2n. Again, simple computations show that it is an

elliptical disc of area
4π√

3
n. Next, consider the lattice formed by the

points (x, y) such that n divides ax − by. The area of the fundamental

parallelepiped is clearly at most n. By Minkowski’s theorem, we can find

(x, y) ∈ Z2 \ {(0, 0)} such that x2 + xy + y2 < 2n and n divides ax− by.

We claim that this will give an integer solution of the equation. Observe

that ab(x2 +xy + y2) = c2xyn+(ax− by)(bx−ay) and so n also divides

x2 + xy + y2 (since n is relatively prime with a, b). This allows us to

conclude.

Before continuing with some more difficult problems, let us remind

that for any symmetric real matrix A such that∑
1≤i,j≤n

aijxixj > 0

for all x = (x1, x2, . . . , xn) ∈ Rn \ {0} the set of points verifying∑
1≤i,j≤n

aijxixj ≤ 1
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has a volume equal to
V ol(Bn)√

det A
, where

V ol(Bn) =
π

n
2

Γ
(
1 +

n

2

)
(here Γ(x) =

∫ ∞

0
e−ttx−1dt is Euler’s gamma function). The proof of this

result is non elementary and we invite the reader to read more about it

in any decent book of multivariate integral calculus. In particular, the

reader has noticed that these results can be applied to previous problems

to facilitate the computations of different areas and volumes. With these

results (that we will admit) in mind, let’s attack some serious problems.

If we spoke about squares, why not present the beautiful classical

proof of Lagrange’s theorem on representations using 4 squares.

Problem 5. (Lagrange’s theorem) Any natural number is a sum of

4 squares.

Proof. This is going to be much more complicated, but the idea is

always the same. The main difficulty is finding the appropriate lattice

and convex body. First of all, let us prove the result for prime numbers.

Let thus p > 2 a prime number and consider the sets A = {x2| x ∈ Zp},
B = {−y2 − 1| y ∈ Zp}. Since there are

p + 1
2

squares in Zp (as we

have already seen in previous notes), these two sets cannot be disjoint.

In particular, there are x, y such that 0 ≤ x, y ≤ p− 1 and p|x2 + y2 +1.

This is the observation that will allow us to find a good lattice. Consider

now the vectors

v1 = (p, 0, 0, 0), v2 = (0, p, 0, 0), v3 = (x, y, 1, 0), v4 = (y,−x, 0, 1)

and the lattice L generated by these vectors. A simple computation

(using the above formulas) allows to prove that the volume of the fun-

damental parallelepiped is p2. Moreover, one can easily verify that for

all point (x, y, z, t) ∈ L one has p|x2 + y2 + z2 + t2. Even more, one can
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also prove (by employing the non-elementary results stated before this

problem) that the volume of the convex body A = {x = (a, b, c, d) ∈
R4| a2 + b2 + c2 + d2 < 2p} is equal to 2π2p2 > 16V ol(P ), thus A∩L is

not empty. It suffices then to choose a point (x, y, z, t) ∈ L ∩ A and we

will clearly have x2 + y2 + z2 + t2 = p. Thus the theorem is proved for

prime numbers.

Of course, everything would be nice if the product of two sums of 4

squares is always a sum of 4 squares. Hopefully, it is the case, but the

proof is not obvious at all. It follows form the miraculous identity:

(a2 + b2 + c2 + d2)(x2 + y2 + z2 + t2) = (ax + by + cz + dt)2

= (ay − bx + ct− dz)2 + (az − bt + dy − cx)2 + (at + bz − cy − dx)2.

Of course, very nice, but how could one think at such an identity?

The eternal question... Well, this time there is a very nice reason: instead

of thinking in eight variables, let us reason only with four. Consider the

numbers z1 = a + bi, z2 = c + di, z3 = x + yi, z4 = z + ti. Introduce the

matrices

M =

(
z1 z2

−z2 z1

)
, N =

(
z3 z4

−z4 z3

)
.

We have

det(M) = |z1|2 + |z2|2 = a2 + b2 + c2 + d2

and similarly

det(N) = x2 + y2 + z2 + t2.

It is then normal to try to express (a2 + b2 + c2 + d2)(x2 + y2 + z2 + t2)

as det(MN). But surprise! We have

MN =

(
z1z3 − z2z4 z1z4 + z2z3

−z1z4 + z2z3 z1z3 − z2z4

)
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and so det(MN) is again a sum of 4 squares. The identity appears thus

naturally...

Let us concentrate a little bit more on approximations of real num-

bers. We have some beautiful results of Minkowski that deserve to be

presented after this small introduction to geometry of numbers.

Problem 6. (Minkowski’s linear forms’ theorem) Let A = (aij) be

a n×n invertible matrix of real numbers and suppose that c1, c2, . . . , cn

are positive real numbers such that c1c2 . . . cn > |det A|. Then there

are integers x1, x2, . . . , xn, not all 0, such that

∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣ < ci for all

i = 1, . . . , n.

Solution. We need to prove that there exists a non-zero vector

X that also belongs to the region {Y ∈ Rn| |A−1Y |i < ci, i =

1, . . . , n} (here A−1Y = (|A−1Y |1, . . . , |A−1Y |n). But observe that

{Y ∈ Rn| |A−1Y |i < ci, i = 1, . . . , n} is exactly the image trough

A−1 of the parallelepiped {Y ∈ Rn| − ci < Yi < ci, i = 1, . . . , n} which

has volume 2nc1 . . . cn, thus {Y ∈ Rn| |A−1Y |i < ci, i = 1, . . . , n} is

a convex body of volume
1

det A
2nc1 . . . cn > 2n. By Minkowski’s theo-

rem, this body will contain a non-zero lattice point, which will verify

the conditions of the problem.

And here is a nice consequence of the previous theorem.

Problem 7. Suppose A = (aij)1≤i≤m
1≤j≤n

is a matrix with m,n real

numbers and a ≥ 1 is a real number. Then one can find x1, x2, . . . , xn

integers between −a and a, not all 0, such that∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣ < a−
n
m for all 1 ≤ i ≤ m.

Solution. All we need to do is to apply the result in problem 6 for

the invertible matrix

(
A Im

In 0

)
, whose determinant equals 1 or −1
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and make the choice c1 = · · · = cm = a−
n
m , cm+i = a, 1 ≤ i ≤ n.

Incredibly, but the proof ends here!!!

Proposed problems

1. Suppose that a, b, c are positive integers such that ac = b2 + 1.

Then there exist x, y, z, t integers such that a = x2 + y2, b = z2 + t2,

c = xz + yt.

Imo Shortlist

2. Suppose that a natural number is the sum of three squares of

rational numbers. Then prove that it is also a sum of squares of three

natural numbers (the use of three squares theorem is forbidden!).

Davenport-Cassels lemma

3. Consider a disc of radius R. At each lattice point of this disc,

except for the origin, one plants a circular tree of radius r. Suppose that

r is optimal with respect to the following property: if one regards from

the origin, he can see at least a point situated at the exterior of the disc.

Then prove that
1√

R2 + 1
≤ r <

1
R

.

AMM

4. Suppose that a, b, c are positive integers such that a > b > c.

Prove that we can find three integers x, y, z, not all 0, such that

ax + by + cz = 0 and max{|x|, |y|, |z|} <
2√
3
a + 1.

Miklos Schweitzer competition

5. Suppose that a, b, c are positive integers such that ac = b2 + 1.

Prove that the equation ax2 + 2bxy + cy2 = 1 is solvable in integers.

6. Suppose that aij (1 ≤ i, j ≤ n) are rational numbers such that

for any x = (x1, . . . , xn) ∈ Rn \ {0} we have
∑

1≤i,j≤n

aijxixj > 0. Then
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there are integers (not all zero) x1, . . . , xn such that∑
1≤i,j≤n

aijxixj < n
n
√

det A,

where A = (aij).

Minkowski

7. Suppose that x1, x2, . . . , xn are algebraic integers such that for

any 1 ≤ i ≤ n there is at least a conjugate of xi which is not between

x1, x2, . . . , xn. Then the set of n-tuples (f(x1), f(x2), . . . , f(xn)) with

f ∈ Z[X] is dense in Rn.

8. Suppose that a, b are rational numbers such that the equation

ax2 + by2 = 1 has at least one rational solution. Then it has infinitely

many rational solutions.

Kurschak contest

9. Let us denote A(C, r) the set of points w on the unit sphere in

Rn with the property that |wk| ≥ C

‖k‖r
for any non-zero vector k ∈ Zn

(here wk is the usual scalar product and ‖k‖ is the Euclidean norm of

the vector k ∈ Zn). Prove that if r > n− 1 there exists C > 0 such that

A(C, r) is non-empty, but if r < n− 1 there is no such C > 0.

Mathlinks contest (after an ENS entrance exam problem)

10. Using the non-elementary results presented in the topic, prove

that if A = (aij)1≤i,j≤n is a symmetric integer matrix such that∑
1≤i,j≤n

aijxixj > 0 for all x = (x1, x2, . . . , xn) ∈ Rn \ {0}, then we

can find an integer matrix B such that A = B · tB. Deduce the result

from problem 1.

11. Let n ≥ 5 and a1, . . . , an, b1, . . . , bn some integers verifying that

all pairs (ai, bi) are different and |aibi+1 − ai+1bi| = 1, 1 ≤ i ≤ n (here

(an+1, bn+1) = (a1, b1)). Prove that one can find 1 < |i− j| < n− 1 such

that |aibj − ajbi| = 1.
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Korea TST

12. Let a, b, c, d be positive integers such that there are 2004 pairs

(x, y) such that x, y ∈ [0, 1] and ax + by, cx + dy ∈ Z. If (a, c) = 6, find

(b, d).

Nikolai Nikolov, Bulgaria Olympiad

13. A polygon of area greater than n is given in a plane. Prove that

it contains n + 1 points Ai(xi, yi) such that xi − xj , yi − yj ∈ Z for all

1 ≤ i, j ≤ n + 1.

China TST 1988
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THE SMALLER, THE BETTER

Often, a large amount of simple ideas can solve very difficult prob-

lems. We have seen or will see a few such examples in our journey through

the world of numbers: clever congruences that readily solve Diophantine

equations, properties of the primes of the form 4k + 3 or even complex

numbers and analysis. All these can be called ”tricks”, but in fact they

are much more, as you are going to see soon.

In this unit, we will discuss a fundamental concept in number theory,

the order of an element. It may seem contradictory for us to talk about

simple ideas and then say ”a fundamental concept”. Well, what we are

going to discuss about is the bridge between simplicity and complexity.

The reason for which we say it is a simple idea can be easily guessed

from the definition: given are the positive integer n > 1 and the integer a

such that gcd(a, n) = 1, the smallest possible integer d for which n|ad−1

is called the order of a modulo n. The definition is correct, since from

Euler’s theorem we have n|aϕ(n)−1 so such numbers d indeed exist. The

complexity of this concept will follow from the examples.

In what follows we will denote by on(a) the order of a modulo n.

There is a simple property of on(a), which has important consequences:

if k is a positive integer such that n|ak − 1, then d|k. Indeed, because

n|ak−1 and n|ad−1, we find that n|agcd(k,d)−1. But from the definition

of d it follows that d ≤ gcd(k, d), which cannot hold unless d|k. Nice and

easy. But could such a simple idea be good at anything? The answer

is positive and will follow from the solutions of the problems to come.

But, before that, we note a first application of this simple observation:

on(a)|ϕ(n). This is a consequence of the above property and of Euler’s

theorem.

Now, an old and nice problem, which may seem really trivial after

this introduction. But do not get excited so easily, the problem has an
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extremely short solution, but this does not mean that it is obvious.

It appeared in Saint Petersburg Mathematical Olympiad and also in

Gazeta Matematica.

Example 1. Prove that n|ϕ(an − 1) for all positive integers a, n.

Solution. What is oan−1(a)? It may seem a silly question, since

of course oan−1(a) = n. Using the observation in the introduction, we

obtain exactly n|ϕ(an − 1).

Here is another beautiful application of the order of an element. It

is the first case case of Dirichlet’s theorem that we intend to discuss and

is also a classical property.

Example 2. Prove that any prime factor of the nth Fermat number

22n
+ 1 is congruent to 1 modulo 2n+1. Show that there are infinitely

many prime numbers of the form 2nk + 1 for any fixed n.

Solution. Let us consider a prime p such that p|22n
+ 1. Then

p|22n+1 − 1 and consequently op(2)|2n+1. This ensures the existence of

a positive integer k ≤ n + 1 such that op(2) + 2k. We will prove that in

fact k = n + 1. The proof is easy. Indeed, if this is not the case, then

op(2)|2n and so p|2op(2)−1|22n−1. But this is impossible, since p|22n
+1.

Therefore, we have found that op(2) = 2n+1 and we have to prove that

op(2)|p− 1 to finish the first part of the question. But this follows from

the introduction.

The second part is a direct consequence of the first. Indeed, it is

enough to prove that there exists an infinite set of Fermat’s numbers

(22nk + 1)nk>a any two relatively prime. Then we could take a prime

factor of each such Fermat’s number and apply the first part to obtain

that each such prime is of the form 2nk + 1. But not only it is easy to

find such a sequence of Fermat’s coprime numbers, but in fact any two

different Fermat’s numbers are relatively prime. Indeed, suppose that

d|gcd(22n
+1, 22n+k

+1). Then d|22n+1−1 and so d|22n+k −1. Combining
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this with d|22n+k
+1, we obtain a contradiction. Hence both parts of the

problem are solved.

We continue with another special case of the well-known difficult

theorem of Dirichlet on arithmetical sequences. Though classical, the

following problem is not straightforward and this explains probably its

presence on a Korean TST in 2003.

Example 3. For a prime p, let fp(x) = xp−1 + xp−2 + · · ·+ x + 1.

a) If p|m, prove that there exists a prime factor of fp(m) that is

relatively prime with m(m− 1).

b) Prove that there are infinitely many numbers n such that pn + 1

is prime.

Solution.

a) is straightforward. In fact, we will prove that any prime factor of

fp(m) is relatively prime with m(m − 1). Take such a prime divisor q.

Because q|1+m+ · · ·+mp−1, it is clear that gcd(q, m) = 1. Moreover, if

gcd(q, m−1) 6= 1, then q|m−1 and because q|1+m+· · ·+mp−1, it follows

that q|p. But p|m and we find that q|m, which is clearly impossible.

More difficult is b). But we are tempted to use a) and to explore the

properties of fp(m), just like in the previous problem. So, let us take a

prime q|fp(m) for a certain positive integer m divisible by p. Then we

have of course q|mp− 1. But this implies that oq(m)|q and consequently

oq(m) ∈ {1, p}. If oq(m) = p, then q ≡ 1 (mod p). Otherwise, q|m − 1

and because q|fp(m), we deduce that q|p, hence q = p. But we have seen

while solving a) that this is not possible, so the only choice is p|q−1. Now,

we need to find a sequence (mk)k≥1 of multiples of p such that fp(mk)

are pairwise relatively prime. This is not as easy as in the first example.

Anyway, just by trial and error, it is not difficult to find such a sequence.

There are many other approaches, but we like the following one: take

m1 = p and mk = pf(m1)fp(m2) . . . fp(mk−1). Let us prove that fp(mk)
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is relatively prime to fp(m1), fp(m2), . . . , fp(mk−1). Fortunately, this is

easy, since fp(m1)fp(m2) . . . fp(mk−1)|fp(mk) − fp(0)|fp(mk) − 1. The

solution ends here.

The following problem became classical and variants of it have been

given in contests for years. It seems to be a favorite Olympiad problem,

since it uses elementary facts and the method is more than beautiful.

Example 4. Find the smallest number n with the property that

22005|17n − 1.

Solution. The problem actually asks for o22005(17). We know

that o22005(17)|ϕ(22005) = 22004, so o22005(17) = 2k, where k ∈
{1, 2, . . . , 2004}. The order of an element has done its job. Now, it is

time to work with exponents. We have 22005|172k − 1. Using the factor-

ing

172k − 1 = (17− 1)(17 + 1)(172 + 1) . . . (172k−1
+ 1),

we proceed by finding the exponent of 2 in each factor of this product.

But this is not difficult, because for all i ≥ 0 the number 172t
+ 1 is

a multiple of 2, but not a multiple of 4. Thus, v2(172k − 1) = 4 + k

and the order is found by solving the equation k + 4 = 2005. Thus,

o22005(17) = 22001 is the answer to the problem.

Another simple, but not straightforward application of the order

of an element is the following divisibility problem. Here, we also need

some properties of the prime numbers, that we have already studied in

a previous unit.

Example 5. Find all primes p, q such that p2 + 1|2003q + 1 and

q2 + 1|2003p + 1.

Gabriel Dospinescu

Solution. Let us suppose that p ≤ q. We discuss first the trivial case

p = 2. In this case, 5|2003q + 1 and it is easy to deduce that q is even,
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hence q = 2, which is a solution of the problem. Now, suppose that p > 2

and let r be a prime factor of p2 + 1. Because r|20032q − 1, it follows

that or(2003)|2q. Suppose that (q, or(2003)) = 1. Then or(2003)|2 and

r|20032−1 = 23 ·3 ·7 ·11 ·13 ·167. It seems that this is a dead end, since

there are too many possible values for r. Another simple observation

narrows the number of possible cases: because r|p2 + 1, must be of the

form 4k + 1 or equal to 2 and now we do not have many possibilities:

r ∈ {2, 13}. The case r = 13 is also impossible, because 2003q + 1 ≡ 2

(mod 13) and r|2003q + 1. So, we have found that for any prime factor

r of p2 + 1, we have either r = 2 or q|or(2003), which in turn implies

q|r−1. Because p2+1 is even, but not divisible by 4 and because any odd

prime factor of it is congruent to 1 modulo q, we must have p2 + 1 ≡ 2

(mod q). This implies that p2 + 1 ≡ 2 (mod q), that is q|(p− 1)(p + 1).

Combining this with the assumption that p ≤ q yields q|p + 1 and in

fact q = p+1. It follows that p = 2, contradicting the assumption p > 2.

Therefore the only pair is (2,2).

More difficult is the following problem, proposed by Reid Barton

for the USA TST in 2003. Anyway, using the order of an element, the

problem is not very difficult and the solution follows naturally. Let us

see...

Example 6. Find all ordered triples of primes (p, q, r) such that

p|qr + 1, q|rp + 1, r|pq + 1.

Reid Barton, TST USA 2003

Solution. It is quite clear that p, q, r are distinct. Indeed, if for

example p = q, then the relation p|qr + 1 is impossible. We will prove

that we cannot have p, q, r > 2. Suppose this is the case. The first

condition p|qr + 1 implies p|q2r − 1 and so op(q)|2r. If op(q) is odd, it

follows that p|qr − 1, which combined with p|qr + 1 yields p = 2, which
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is impossible. Thus, op(q) is either 2 or 2r. Could we have op(q) = 2r?

No, since this would imply that 2r|p− 1 and so 0 ≡ pq + 1 (mod r) ≡ 2

(mod r), that is r = 2, false. Therefore, the only possibility is op(q) = 2

and so p|q2−1. We cannot have p|q−1, because p|qr+1 and p 6= 2. Thus,

p|q + 1 and in fact p|q + 1
2

. In the same way, we find that q|r + 1
2

and

r|p + 1
2

. This is clearly impossible, just by looking at the largest among

p, q, r. So, our assumption was wrong and indeed one of the three primes

must equal 2. Suppose without loss of generality that p = 2. Then q is

odd, q|r2 +1 and r|2q +1. Similarly, or(2)|2q. If q|or(2), then q|r−1 and

so q|r2+1−(r2−1) = 2, which contradicts the already established result

that q is odd. Thus, or(2)|2 and r|3. As a matter of fact, this implies

that r = 3 and q = 5, yielding the triple (2,5,3). It is immediate to

verify that this triple satisfies all conditions of the problem. Moreover,

all solutions are given by cyclic permutations of the components of this

triple.

Can you find the smallest prime factor of the number 225
+ 1. Yes,

with a large amount of work, you will probably find it. But what about

the number 12215
+1? It has more than 30000 digits, so you will probably

be bored before finding its smallest prime factor. But here is a beautiful

and short solution, which does not need a single division.

Example 7. Find the smallest prime factor of the number 12215
+1.

Solution. Let p be this prime number. Because p|12216 − 1, we find

that op(12)|216. Exactly as in the solution of the first example, we find

that op(12) = 216 and so 216|p− 1. Therefore p ≥ 1 + 216. But it is well-

known that 216 + 1 is a prime (and if you do not believe, you can check;

it is not that difficult). So, we might try to see if this number divides

12215
+ 1. Let q = 216 + 1. Then 12215

+ 1 = 2q−1 · 3
q−1
2 + 1 ≡ 3

q−1
2 + 1

(mod q). It remains to see whether
(

3
q

)
= −1. But this is done in

the unit Quadratic reciprocity and the answer is positive, so indeed
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3
q−1
2 + 1 ≡ 0 (mod 2) and 216 + 1 is the smallest prime factor of the

number 12215
+ 1.

Ok, you must be already tired of this old fashioned idea that any

prime factor of 22n
+ 1 is congruent to 1 modulo 2n+1. Yet, here is a

problem that will keep you occupied for a certain period of time, even

if it uses only this simple idea.

Example 8. Prove that for any n > 1 the largest prime factor of

22n
+ 1 is at least equal to n · 2n+2 + 1.

China TST, 2005

Solution. The reader will not imagine how simple this problem re-

ally is. If the start is correct... Indeed, let us write 22n
+ 1 = pk1

1 . . . pkr
r

with p1 < . . . , pr prime numbers. We know that we can find qi ∈ N
such that pi = 1 + 2n+1qi. Now, reduce the relation 22n

+ 1 = pk1
1 . . . pkr

r

modulo 22n+2. It follows that 1 ≡ 1 + 2n+1
r∑

i=1

kiqi (mod 22n+2) and so

r∑
i=1

kiqi ≥ 2n+1. But then qr

r∑
i=1

ki ≥ 2n+1. Now everything becomes sim-

ple, since we have 22n
+1 > (1+2n+1)k1+···+kr and so k1+· · ·+kr ≤

2n

n + 1
.

This shows that qr ≤ 2(n + 1) and the proof finishes here.

Problems for training

1. Let a, n > 2 be positive integers such that n|an−1 − 1 and n does

not divide any of the numbers ax − 1, where x < n − 1 and x|n − 1.

Prove that n is a prime number.

2. Let p be a nonzero polynomial with integral coefficients. Prove

that there are at most finitely many numbers n for which p(n) and

22n
+ 1 are not relatively prime.

3. Let p > 3 be a prime. Prove that any positive divisor of the

number
2p + 1

3
is of the form 2kp + 1.
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Fermat

4. Let a > b > 1 and n > 1 be positive integers. Prove that any

positive divisor of the number an − bn is either of the form nk + 1 or

divides a number of the form ad − bd, with d|n, d < n.

5. Find all positive integers m,n for which n|1 + m3n
+ m2·3n

.

Bulgaria, 1997

6. Find the smallest repunit divisible by 19.

Gazeta Matematica

7. Let p be a prime and q > 5 a prime factor of the number 2p + 3p.

Prove that q > p.

Laurentiu Panaitopol, TST Romania

8. Let m > 1 be an odd number. Find the smallest number n such

that 21989|mn − 1.

IMO 1989 Shortlist

9. Let 0 < m < n be integers such that 1978m and 1978n have the

same last three digits. Find the least possible value of m + n.

IMO 1978

10. Let p be a prime number and let d a positive divisor of p − 1.

Prove that there is a positive integer n such that op(n) = d.

11. Let q = k · 2m + 1 be a divisor of the number 22n
+ 1, where k

is odd. Find oq(k) in terms of n and v2(m)

J. van de Lune

12. Let n be a positive integer such that n− 1 = FR, where all the

prime factors of F are known and gcd(F,R) = 1. Suppose further that

there is an integer a such that n|an−1 − 1 and for all primes p dividing

n− 1 we have gcd(n, a
n−1

p − 1) = 1. Prove that any prime factor of n is

congruent to 1 modulo F .
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Proth, Pocklington, Lehmer Test

13. Let a > 1 be an integer and let us define op(a) = 0 if p|a. Prove

that the function f : {2, 3, 5, 7, 11, . . . } → N, f(p) =
p− 1
op(a)

is unbounded.

Jon Froemke, Jerrold W Grossman, AMM

14. Let d = op(n) and let k = vp(nd − 1).

a) If k > 1 then opj (n) = d for j ≤ k and opj (n) = pj−kd for all

j ≥ k.

b) If k = 1 then let l = vp(npd−1). Prove that op(n) = d, opj (n) = pd

for 2 ≤ j ≤ l and opj (n) = pj−l+1d, for all j ≥ l.

15. Let A be a finite set of prime numbers and let a ≥ 2 be a positive

integer. Prove that there are only finitely many positive integers n such

that all prime factors of an − 1 are in A.

Iran Olympiad

16. Prove that for any prime p there is a prime number q that does

not divide any of the numbers np − p, with n ≥ 1.

IMO 2003

17. Let a > 1 be a positive integer. Prove that for infinitely many n

the largest prime factor of an − 1 is greater than n loga n.

Gabriel Dospinescu

203



DENSITY AND REGULAR DISTRIBUTION

Everyone knows that ({na})n≥1 is dense in [0,1] if a is an irrational

number, a classical theorem of Kronecker. Various applications of this

nice result have appeared in different contests and will probably make

the object of Olympiad problems in the future. Yet, there are some

examples in which this result is ineffective. A simple one is as follows:

using Kronecker’s theorem one can easily prove that for any positive

integer a that is not a power of 10 there exists n such that an begins with

2006. The natural question: what fraction of numbers between 1 and n

have this property (speaking here about large values of n) is much more

difficult and to answer it we need some stronger tools. This is the reason

for which we will try to discuss some classical approximation theorems,

particularly the very efficient Weil criterion and its consequences. The

proofs are non-trivial and require some heavy-duty analysis. Yet, the

consequences that will be discussed here are almost elementary.

Of course, one cannot start a topic about approximation theorems

without talking first about Kronecker’s theorem. We skip the proof, not

only because it is very well-known, but because we will prove a much

stronger result about the sequence ({na})n≥1. Instead, we will discuss

two beautiful problems, consequences of this theorem.

Example 1. Prove that the sequence ([n
√

2003])n≥1 contains arbi-

trarily long geometric progressions with arbitrarily large ratio.

Radu Gologan, IMO TST Romania

Solution. Let us take p a very large number. We will prove that

there are arbitrarily long geometric sequences with ratio p. Given

n ≥ 3, let us prove that we can find a positive integer m such that

[pkm
√

2003] = pk[m
√

2003] for all 1 ≤ k ≤ n. If the existence of such a

number is proved, then the conclusion is immediate. But observe that
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[pkm
√

2003] = pk[m
√

2003] is equivalent to [pk{m
√

2003}] = 0, or to

{m
√

2003} <
1
pn

. The existence of a positive integer m with the last

property is ensured by Kronecker’s theorem.

Here is a problem that is apparently very difficult, but which is again

a simple consequence of Kronecker’s theorem.

Example 2. Consider k ≥ 1 and a such that log a is irrational.

Define the sequence xn as the number formed by the first k digits of

the number [an] with n ≥ 1. Prove that this sequence is not eventually

periodical.

Gabriel Dospinescu, Mathlinks Contest

Solution. The solution is based on certain simple, but useful re-

marks. First of all, the number formed with the first k digits of a num-

ber m is [10k−1+{log m}]. The proof of this claim is not difficult. Indeed,

let us write m = x1x2 . . . xp, with p ≥ k. Then m = x1 . . . xk · 10p−k +

xk+1 . . . xp, hence x1 . . . xk ·10p−k ≤ m < (x1 . . . xk +1) ·10p−k. It follows

that x1 . . . xk =
[ m

10p−k

]
and, since p = 1 + [log m], the claim is proved.

Another remark is the following: there is a positive integer r such

that xrT > 10k−1. Indeed, assuming the contrary, we find that for all

r > 0 we have xrT = 10k−1. Using the first observation, it follows that

k − 1 + {log[arT ]} < log(1 + 10k−1) for all r. Thus

log
(

1 +
1

10k−1

)
> log[arT ]− [log[arT ]] > log(arT − 1)− [log arT ]

= {rT log a} − log
arT

arT − 1
.

It suffices now to consider a sequence of positive integers (rn) such

that 1− 1
n

< {rnT log a} (the existence is a simple consequence of Kro-

necker’s lemma) and we will deduce that:

log
(

1 +
1

10k−1

)
+

1
n

+ log
arnT

arnT − 1
> 1 for all n.
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The last inequality is clearly impossible.

Finally, assume the existence of such an r. It follows that for n > r

we have xnT = xrT , thus

{log[anT ]} ≥ log
(

1 +
1

10k−1

)
.

This shows that

log
(

1 +
1

10k−1

)
≤ log[anT ]− [log[anT ]] ≤ nT log a− [log anT ]

= {nT log a} for all n > r.

But this contradicts Kronecker’s theorem.

Before passing to the quantitative results stated at the beginning

of this chapter, we must speak about a simple, yet surprising result,

which turns out to be very useful when dealing with real numbers and

their properties. Sometimes, it can even help us reducing the problem

to integers, as we will see in one of the examples. But first, let us state

and prove this result.

Example 3. (Dirichlet) Let x1, x2, . . . , xk be some real numbers and

let ε > 0. There exists a positive integer n and integers p1, p2, . . . , pk such

that |nxi − pi| < ε for all i.

Solution. Thus we need to prove that if we have a finite set of real

numbers, we can multiply all its elements by a suitable integer such that

the elements of the new set are as close to integers as we want.

Let us choose an integer N >
1
ε

and partition the interval [0, 1) in

N intervals,

[0, 1) =
N⋃

s=1

Js, Js =
[
s− 1
N

,
s

N

)
.

Now, choose n = Nk + 1 and associate to any positive integer

q ∈ {1, 2, . . . , n} a sequence of k positive integers α1, α2, . . . , αk, where
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αi = s if and only if {qxi} ∈ Js. We obtain at most Nk sequences cor-

responding to these numbers and so by Dirichlet’s criterion we can find

1 ≤ u < v ≤ n such that the same sequence is associated to u and v.

This means that for all 1 ≤ i ≤ k we have

|{uxi} − {vxi}| <
1
N
≤ ε.

It suffices thus to pick n = v − u, pi = [vxi]− [uxi].

And here is how we can use this result in problems where it is more

comfortable to work with integers. But don’t kid yourself, there are

not many such problems. The one we are going to discuss has had a

circuitous itinerary between world’s Olympiads: proposed for IMO long

time ago, it appeared next at the W.L. Putnam Competition and later

on in a Japanese Mathematical Olympiad.

Example 4. Let x1, x2, . . . , x2n+1 be positive real numbers with the

property: for any 1 ≤ i ≤ 2n+1 one can make two groups of n numbers

by using xj , j 6= i, such that the sum of the numbers in each group is

the same. Prove that all numbers are equal.

Solution. Of course, the problem for integers is very well-known and

easy: it suffices to observe that in this case all numbers xi have the same

parity and the use of infinite descent solves the problem (either they are

all even and in this case we divide each one by two and obtain a new

set with smaller sum and the same properties; otherwise, we subtract 1

from each one and then divide by 2).

Now, assume that they are real numbers, which is clearly much more

subtle. First of all, if they are all rational, it suffices to multiply by their

common denominator and apply the first case. Thus assume that at least

one of the numbers is irrational. Consider ε > 0, a positive integer n,

and some integers p1, p2, . . . , pk such that |nxi − pi| < ε for all i. We

claim that if ε > 0 is small enough, the corresponding p1, p2, . . . , pk have
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the same property as x1, x2, . . . , x2n+1. Indeed, take some i and write

the partition condition in the form∑
j 6=i

aijnxj = 0 or
∑
j 6=i

aij(nxj − pj) = −
∑
j 6=i

aijpj

(where of course aij ∈ {−1, 1}). Then∣∣∣∣∣∣
∑
j 6=i

aijpj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j 6=i

aij(nxj − pj)

∣∣∣∣∣∣ ≤ 2nε.

Thus if we choose ε <
1
2n

, then
∑
j 6=i

aijpj = 0 and so p1, p2, . . . , pk

have the same property. Since they are all integers, they must be equal

(again, because of the first case). Thus we have proved that for any

N > 2n there are integers nN , pN such that |nNxi − pN | ≤
1
N

.

Because at least one of the numbers x1, x2, . . . , x2n+1 is irrational, it

is not difficult to prove that the sequence (nN )N>2n is unbounded. But
2
N

> |nN |max
i,j

|xi − xj |, hence maxi,j |xi − xj | = 0 and the problem is

solved.

Now, let us turn to more quantitative results about the set of frac-

tional parts of natural multiples of different real numbers. The following

criterion, due to Weil, is famous and deserves to be discussed because of

its beauty and apparent simplicity.

Weil criterion. Let (an)n≥1 be a sequence of real numbers from the

interval [0,1]. Then the following statements are equivalent:

a) For any real numbers 0 ≤ a ≤ b ≤ 1,

lim
n→∞

|{i| 1 ≤ i ≤ n, ai ∈ [a, b]}|
n

= b− a;

b) For any continuous function f : [0, 1] → R,

lim
n→∞

1
n

n∑
k=1

f(ak) =
∫ 1

0
f(x)dx;
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c) For any positive integer p ≥ 1,

lim
n→∞

1
n

n∑
k=1

e2iπpak = 0.

In this case we will say that the sequence is equidistributed.

We will present just a sketch of the solution, containing yet all the

necessary ingredients.

First of all, we observe that a) says precisely that b) is true for

the characteristic function of any sub-interval of [0,1]. By linearity, this

remains true for any piecewise function. Now, there is a well-known and

easy to verify property of continuous functions: they can be uniformly

approximated with piecewise functions. That is, given ε > 0, we can find

a piecewise function g such that |g(x)− f(x)| < ε for all x ∈ [0, 1]. But

then if we write∣∣∣∣∣ 1n
n∑

k=1

f(ak)−
∫ 1

0
f(x)dx

∣∣∣∣∣ ≤ 1
n

n∑
k=1

|f(ak)− g(ak)|+
∫ 1

0
|f(x)− g(x)|dx

+

∣∣∣∣∣ 1n
n∑

k=1

g(ak)−
∫ 1

0
g(x)dx

∣∣∣∣∣
and apply the result in b) for the function g, we easily deduce that b)

is true for any continuous function.

The fact that b) implies c) is immediate. More subtle is that b)

implies a). Let us consider the subinterval I = [a, b] with 0 < a < b < 1.

Next, consider two sequences of continuous functions fk, gk such that fk

is zero on [0, a], [b, 1] and 1 on
[
a +

1
k
, b− 1

k

]
(being affine otherwise),

while gk has ”the same” properties but is greater than or equal to λI

(the characteristic function of I = [a, b]). Therefore

1
n

n∑
j=1

fk(aj) ≤
|{i| 1 ≤ i ≤ n, ai ∈ [a, b]}|

n
≤ 1

n

n∑
j=1

gk(aj).
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But from the hypothesis,

1
n

n∑
j=1

fk(aj) →
∫ 1

0
fk(x)dx = b− a− 1

k

and
1
n

n∑
j=1

gk(aj) →
∫ 1

0
gk(x)dx = b− a +

1
k
.

Now, let us take ε > 0 and k sufficiently large. The above inequalities

show that actually for all sufficiently large positive integer n∣∣∣∣ |{i| 1 ≤ i ≤ n, ai ∈ [a, b]}|
n

− b + a

∣∣∣∣ ≤ 2ε

and the conclusion follows. The reader has already seen how to adapt

this proof for the case a = 0 or b = 1.

Finally, let us prove that c) implies b). Of course, a linearity argu-

ment allows us to assume that b) is true for any trigonometric poly-

nomials of any degree. Because any continuous function f : [0, 1] → R
satisfying f(0) = f(1) can be uniformly approximated by trigonometric

polynomials (this is a really non-trivial result due to Weierstrass), we

deduce that b) is true for continuous functions f for which f(0) = f(1).

Now, given f : [0, 1] → R continuous, it is immediate that for any ε > 0

we can find two continuous functions g, h, both having equal values at

0 and 1 and such that

|f(x)− g(x)| ≤ h(x) and
∫ 1

0
h(x)dx ≤ ε.

Using the same arguments as those used to prove that b) implies a),

one can easily see that b) is true for any continuous function.

The first problem that we discuss is in fact the most common result

about equidistribution. We invite the reader to find an elementary proof

in order to appreciate the power of Weil’s criterion. Before presenting the

second problem, we need another definition: we say that the sequence
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(an)n≥1 is uniformly distributed mod 1 if the sequence of fractional parts

of an is equidistributed. So, here is the classical example.

Example 5. Let a be an irrational number. Then the sequence

(na)n≥1 is uniformly distributed mod 1.

Solution. Well, after so much work, we deserve a reward: this is a

simple consequence of Weil’s criterion. Indeed, it suffices to prove that

c) is verified, which reduces to proving that

lim
n→∞

1
n

n∑
k=1

e2iπpka = 0 (∗)

for all integers p ≥ 1. But this is just a geometric series!!! A one-line

computation shows that (∗) is trivially satisfied and thus we have the

desired result.

It’s probably time to solve the problem presented in the very begin-

ning of this note: how to compute the density of those numbers n for

which 2n begins with 2006 (for example). Well, again a reward: this is

going to be equally easy (of course, the reader needs some rest before

looking at some deeper results...).

Example 6. What is the density of the set of positive integers n for

which 2n begins with 2006?

Solution. Indeed, 2n begins with 2006 if and only if there is a

p ≥ 1 and some digits a1, a2, . . . , ap ∈ {0, 1, . . . , 9} such that 2n −
2006a1a2 . . . ap, which is clearly equivalent to the existence of p ≥ 1

such that

2007 · 10p > 2n ≥ 2006 · 10p.

This can be rewritten in the form

log 2007 + p > n log 2 ≥ log 2006 + p

This implies [n log 2] = p + 3 hence log
2007
1000

> {n log 2} > log
2006
1000

.

Thus the density of the desired set is exactly the density of the set of
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positive integers n satisfying

log
2007
1000

> {n log 2} > log
2006
1000

.

From example 5, the last set has density log
2007
2006

and so this is the

answer to our problem.

We have seen a beautiful proof of the fact that if a is irrational, then

(na)n≥1 is uniformly distributed mod 1. Actually, much more is true,

but this much more is also much more difficult to prove. The next two

examples are two important theorems. The first is due to Van der Corput

and shows how a brilliant combination of algebraic manipulations and

Weil’s criterion can yield difficult and nice results.

Example 7. (Van der Corput) Let (xn) be a sequence of real num-

bers such that the sequences (xn+p − xn)n≥1 are equidistributed for all

p ≥ 1. Then the sequence (xn) is also equidistributed.

This is not an Olympiad problem!!! But mathematics is not just

Olympiad and from time to time (in fact, from a certain time on) one

should try to discover what is behind such great results. This is the

reason for which we present a proof of this theorem, a difficult proof

that uses the ”well-known” but not easy to remember inequality of Van

der Corput.

Lemma. (Van der Corput) For any complex numbers z1, z2, . . . , zn

and any h ∈ {1, 2, . . . , n}, the following inequality is true (with the con-

vention that zi = 0 for any integer i not in {1, 2, . . . , n}):

h2

∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣
2

≤ (n + h− 1)

[
2

p−1∑
r=1

(h− r)Re

(
n−r∑
i=1

zizi+r

)
+ h

n∑
i=1

|zi|2
]

.

Unbelievable, but true! Not to mention that the proof of this in-

equality is anything but easy. We will limit to give the main idea of the
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proof, the computations being very technical. The idea behind this fun-

damental inequality is another fundamental one. You would have never

guessed: the Cauchy Schwarz inequality!!! The simple observation that

h

n∑
i=1

zi =
n+h−1∑

i=1

h−1∑
j=0

zi−j

allows us to write (via Cauchy Schwarz’s inequality):

h2

∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣
2

≤ (n + h− 1)
n+h−1∑

i=1

∣∣∣∣∣∣
h−1∑
j=0

zi−j

∣∣∣∣∣∣
2

.

And next ? Well... this is where the readers will get some satisfac-

tion... if they have the patience to expand
n+p−1∑

i=1

∣∣∣∣∣∣
p−1∑
j=0

zi−j

∣∣∣∣∣∣
2

and see that

it is nothing else than

2
p−1∑
r=1

(p− r)Re

(
n−r∑
i=1

zizi+r

)
+ p

n∑
i=1

|zi|2.

Wishing them good luck with the computations, we will now prove

Van der Corput’s theorem, by using this lemma and Weil’s criterion.

Of course, the idea is to prove that

lim
n→∞

1
n

n∑
k=1

e2iπpxk = 0 for all p ≥ 1.

Fix such a p ≥ 1 and take for the moment a positive real number h and

ε ∈ (0, 1) (h may depend on ε). Also, denote zj = e2iπpxj . Using the

lemma, we have:∣∣∣∣∣∣ 1n
n∑

j=1

zj

∣∣∣∣∣∣
2

≤ 1
n2

· n + h− 1
h2

hn + 2
h−1∑
i=1

(h− i)Re

n−i∑
j=1

zj · zi+j

 .
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Now, let us regard

Re

n−i∑
j=1

zj · zi+j

 = Re

n−i∑
j=1

e2iπp(xj−xi+j)

 ≤

∣∣∣∣∣∣
n−i∑
j=1

e2iπp(xj−xi+j)

∣∣∣∣∣∣ .
Using Weil’s criterion for the sequences (xn+i − xn) for i =

1, 2, . . . , h− 1 we deduce that for all sufficiently large n we have∣∣∣∣∣∣
n−i∑
j=1

e2iπp(xj−xi+j)

∣∣∣∣∣∣ ≤ εn.

Therefore∣∣∣∣∣∣ 1n
n∑

j=1

zj

∣∣∣∣∣∣
2

≤ 1
n2

· n + h− 1
h2

[
hn + 2εn

h−1∑
i=1

(h− i)

]

<
n + h− 1

nh
(1 + ε) <

2(1 + ε)
h

for all sufficiently large n. Now, by choosing h >
2(1 + ε)

ε2
, we deduce

that for all sufficiently large n we have∣∣∣∣∣∣ 1n
n∑

j=1

zj

∣∣∣∣∣∣ ≤ ε.

This shows that Weil’s criterion is verified and thus (xn) is equidis-

tributed.

This was surely the most difficult result of this unit, but why not

taking one more step once we are already here? Let us prove the following

weaker (but as the reader will probably agree, absolutely nontrivial)

version of famous theorem of Weil. It is related to the equidistribution

of the sequence ({f(n)})n≥1 where is a real polynomial having at least

one irrational coefficient except for the free term. We will not prove this

here, but focus on the following result.
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Example 8. (Weil) Let f be a polynomial with real coefficients and

irrational leading coefficient. Then the sequence ({f(n)})n≥1 is equidis-

tributed.

The reader has probably noticed that this is an immediate conse-

quence of Van der Corput’s theorem (but just imagine the amount of

work done to arrive at this conclusion!!!). Indeed, the proof by induction

is immediate.

Indeed, if f has degree 1, then the conclusion is immediate (see

example 5). Now, if the result holds for polynomials of degree at most k,

it suffices (by Van der Corput’s theorem) to prove that for all positive

integers p, the sequence (f(n + p) − (f(n)) is equidistributed. But this

is exactly the induction hypothesis applied to the polynomial (whose

leading coefficient is clearly irrational) f(X + p) − f(X). The proof by

induction finishes here.

Problems for training

1. Compute sup
n≥1

 min
p,q∈N
p+q=n

|p− q
√

3|

.

Putnam Competition

2. Prove that by using different terms of the sequence [n2
√

2006] one

can construct geometric sequences of any length.

3. Let x be an irrational number and let f(t) = min({t}, {1 − t}).
Prove that given any ε > 0 one can find a positive integer n such that

f(n2x) < ε.

Iran 2004

4. Prove that the sequence consisting of the first digit of 2n + 3n is

not periodical.

Tuymaada Olympiad
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5. Suppose that A = {n1, n2, . . . } is a set of positive integers such

that the sequence (cos nk)k≥1 is convergent. Then prove that A has zero

density.

Marian Tetiva

6. Suppose that f is a real, continuous, and periodical function such

that the sequence

(
n∑

k=1

|f(k)|
k

)
n≥1

is bounded. Prove that f(k) = 0 for

all positive integers k. Give a necessary and sufficient condition ensuring

the existence of a constant c > 0 such that
n∑

k=1

|f(k)|
k

> c lnn for all n.

Gabriel Dospinescu

7. Does the sequence sin(n2) + sin(n3) converge?

Gabriel Dospinescu

8. Let f be a polynomial with integral coefficients and let a be an

irrational number. Can all numbers f(k), k = 1, 2, . . . be in the set

A = {[na]| n ≥ 1}? Is it true that any set of positive integers with

positive density contains an infinite arithmetical sequence?

9. Let a, b be positive real numbers such that {na} + {nb} < 1 for

all n. Then at least one of them is an integer.

10. Prove that for every k one can find distinct positive inte-

gers n1, n2, . . . , nk such that [n1

√
2], [n2

√
2], . . . , [nk

√
2] and [n1

√
3],

[n2

√
3], . . . , [nk

√
3] are both geometrical sequences.

After a romanian IMO TST problem

11. A flea moves in the positive direction of an axis, starting from

the origin. It can only jump over distances equal to
√

2 and
√

2005.

Prove that there exists n0 such that the flea will be able to arrive in any

interval [n, n + 1] for all n ≥ n0.

Romanian Contest, 2005
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12. Let a, b, c be positive real numbers. Prove that the sets

A = {[na]| n ≥ 1}, B = {[nb]| n ≥ 1}, C = {[nc]| n ≥ 1}

cannot form a partition of the set of positive integers.

Putnam

13. Let z1, z2, . . . , zn be arbitrary complex numbers. Prove that for

any ε > 0 there are infinitely many positive integers n such that

ε + k

√
|zk

1 + zk
2 + · · ·+ zk

n| < max{|z1|, |z2|, . . . , |zn|}.
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THE SUM OF DIGITS OF A POSITIVE INTEGER

Problems about the sum of digits of a positive integer often occur in

mathematical contests because of their difficulty and the lack of stan-

dard ways to tackle the problem. This is why a synthesis of the most

frequent techniques that occur in such cases would be useful. We have

selected several representative problems to show how the main results

and techniques work and why they are so important.

We will work only in base 10 and we will denote the decimal sum of

digits of the positive integer x by s(x). The following ”formula” can be

checked easily:

s(n) = n− 9
∑
k≥1

⌊ n

10k

⌋
(1)

From (1) we can easily deduce some well-known results about s(n) such

as s(n) ≡ n(mod9) and s(m + n) ≤ s(m) + s(n). Unfortunately, (1) is a

clumsy formula, which can hardly be used in applications. On the other

hand, there are several more or less known results about sum of digits,

results which may offer simple ways to tackle hard problems. This is

what we will discuss about in the following.

The easiest of these techniques is, probably, just the careful anal-

ysis of the structure of the numbers and their digits. This can work

surprisingly well, as we will see in the following examples.

1. Prove that among any 79 consecutive numbers, one can choose at

least one whose sum of digits is a multiple of 13.

Baltic, 1997

Solution. Note that among the first 40 numbers, there are exactly

4 multiples of 10. Also, it is clear that the last but one digit of one of

them is at least 6. Let x be this number. Obviously, x, x+1,..., x+39 are

among our numbers, so s(x), s(x)+ 1,...,s(x)+ 12 occur as sum of digits
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in some of our numbers. Obviously, one of these numbers is a multiple

of 13 and we are done.

We will continue with two harder problems, which still do not require

any special result or technique.

2. Find the greatest N such that one can find N consecutive numbers

with the property that the sum of digits of the k-th number is divisible

by k, for k = 1, 2, ..., N .

Tournament of Towns, 2000

Solution. The answer here is not trivial at all, namely 21. The

main idea is that among s(n + 2), s(n + 12) and s(n + 22) there are two

consecutive numbers, which is impossible since they should all be even.

In truth, we make transports at a + 10 only when the last but one digit

of a is 9, but this situation can occur at most once in our case. So, for

N > 21, we have no solution. For N = 21, we can choose N +1, N +2,...,

N + 21, where N = 291 · 1011!− 12. For i = 1 we have nothing to prove.

For 2 ≤ i ≤ 11, s(N + i) = 2 + 9 + 0 + 9(11!− 1) + i− 2 = i + 11! while

for 12 ≤ i ≤ 21, s(N + i) = 2+9+1+(i− 12) = i, so our numbers have

the desired property.

3. How many positive integers n ≤ 102005 can be written as the sum

of 2 positive integers with the same sum of digits?

Adrian Zahariuc

Solution. Answer: 102005 − 9023. At first glance, it might seem al-

most impossible to find the exact number of positive integers with this

property. In fact, the following is true: a positive integer cannot be writ-

ten as the sum of two numbers with the same sum of digits iff all of its

digits (eventually) excepting the first are 9 and the sum of its digits is

odd.
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Let n be such a number. Suppose there are a, b ∈ Z+ such that

n = a+ b and s(a) = s(b). The main fact is that when we add a+ b = n,

there are no transports. This is clear enough. It follows that s(n) =

s(a) + s(b) = 2s(a), which is impossible since s(n) is odd.

Now we will prove that any number n which is not one of the numbers

stated above, can be written as the sum of 2 positive integers with the

same sum of digits. We will start with the following:

Lemma. There is a ≤ n such that s(a) ≡ s(n− a)(mod2).

Proof. If the s(n) is even, take a = 0. If s(n) is odd, then n must

have a digit which is not the first and is not equal to 9, otherwise it

would have one of the forbidden forms. Let c be the value of this digit

and p its position (from right to left). Then let us chose a = 10p−1(c+1).

At the adding a + (n− a) = n there is exactly one transport, so

s(a) + s(n− a) = 9 + s(n) ≡ 0(mod2) ⇒ s(a) ≡ s(n− a)(mod2)

which proves our claim.

Back to the original problem. All we have to do now is take one-by-

one a ”unity” from a number and give it to the other until the 2 numbers

have the same sum of digits. This will happen since they have the same

parity. So, let us do this rigorously. Let

a = a1a2..ak, n− a = b1b2...bk

The lemma shows that the number of elements of the set I = {i ∈
{1, 2, ..., k} : 2 does not divide ai +bi} is even, so it can be divided into 2

sets with the same number of elements, say I1 and I2. For i = 1, 2, ..., k

define Ai = (ai + bi)/2 if i ∈ I, (ai + bi + 1)/2 if i ∈ I1 or (ai + bi − 1)/2

if i ∈ I2 and Bi = ai + bi −Ai. It is clear that the numbers

A = A1A2...Ak, B = B1B2...Bk

220



have the property that s(A) = s(B) and A + B = n. The proof is

complete.

We have previously seen that s(n) ≡ n(mod9). This is probably the

most famous property of the function s and it has a series of remarkable

applications. Sometimes it is combined with some simple inequalities

such as s(n) ≤ 9(blg nc + 1). Some immediate applications are the fol-

lowing:

4. Find all n for which one can find a and b such that

s(a) = s(b) = s(a + b) = n.

Vasile Zidaru and Mircea Lascu, JBMO TST, 2002

Solution. We have a ≡ b ≡ a + b ≡ n(mod9), so 9 divides n. If

n = 9k, we can take a = b = 10k − 1 and we are done since s(10k − 1) =

s(2 · 10k − 2) = 9k.

5. Find all the possible values of the sum of digits of a perfect square.

Iberoamerican, 1995

Solution. What does sum of digits has to do with perfect squares?

Apparently, nothing, but perfect squares do have something to do with

remainders mod 9! In fact, it is very easy to prove that the only possible

values of a perfect square mod 9 are 0, 1, 4 and 7. So, we deduce that

the sum of digits of a perfect square must be congruent to 0, 1, 4 or 7

mod 9. To prove that all such numbers work, we will use a small and

very common (but worth to remember!) trick: use numbers that consist

almost only of 9-s. We have the following identities:

99...99︸ ︷︷ ︸
n

2 = 99...99︸ ︷︷ ︸
n−1

8 00...00︸ ︷︷ ︸
n−1

1 ⇒ s(99...99︸ ︷︷ ︸
n

2) = 9n

99...99︸ ︷︷ ︸
n−1

12 = 99...99︸ ︷︷ ︸
n−2

82 00...00︸ ︷︷ ︸
n−2

81 ⇒ s(99..99︸ ︷︷ ︸
n−1

12) = 9n + 1
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99...99︸ ︷︷ ︸
n−1

22 = 99...99︸ ︷︷ ︸
n−2

84 00...00︸ ︷︷ ︸
n−2

64 ⇒ s(99..99︸ ︷︷ ︸
n−1

22) = 9n + 4

99...99︸ ︷︷ ︸
n−1

42 = 99...99︸ ︷︷ ︸
n−2

88 00...00︸ ︷︷ ︸
n−2

36 ⇒ s(99..99︸ ︷︷ ︸
n−1

42) = 9n + 7

and since s(0) = 0, s(1) = 1, s(4) = 4 and s(25) = 7 the proof is

complete.

6. Compute s(s(s(44444444))).

IMO 1975

Solution. Using the inequality s(n) ≤ 9(blg nc+1) several times we

have

s(44444444) ≤ 9(
⌊
lg 44444444

⌋
+ 1) < 9 · 20, 000 = 180, 000;

s(s(44444444)) ≤ 9(
⌊
lg s(44444444)

⌋
+ 1) ≤ 9(lg 180, 000 + 1) ≤ 36,

so s(s(s(44444444))) ≤ 12. On the other hand, s(s(s(n))) ≡ s(s(n)) ≡
s(n) ≡ n(mod9) and since

44444444 ≡ 74444 = 7 · 731481 ≡ 7(mod9),

the only possible answer is 7.

Finally, we present a beautiful problem which appeared in the Rus-

sian Olympiad and, later, in Kvant.

7. Prove that for any N there is n ≥ N such that s(3n) ≥ s(3n+1).

Solution. Suppose by way of contradiction that there is one N such

that s(3n+1) − s(3n) > 0,∀n ≥ N . But, for n ≥ 2, s(3n+1) − s(3n) ≡
0(mod9), so s(3n+1)− s(3n) ≥ 9,∀n ≥ N . It follows that

n∑
k=N+1

(
3k+1 − 3k

)
≥ 9(n−N) ⇒ s(3n+1) ≥ 9(n−N), n ≥ N + 1.

But s(3n+1) ≤ 9(
⌊
lg 3n+1

⌋
+ 1), so 9n − 9N ≤ 9 + 9(n + 1) lg 3, for all

n ≥ N + 1. This is obviously a contradiction.

If so far we have studied some remarkable properties of the function

s, which were quite well-known, it is time to present some problems and
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results which are less familiar, but interesting and hard. The first result

is the following:

Statement. If 1 ≤ x ≤ 10n, then s(x(10n − 1)) = 9n.

Proof. The idea is very simple. All we have to do is write x =

a1a2...aj with aj 6= 0 (we can ignore the final 0-s of x) and note that

x(10n − 1) = a1a2...aj−1(aj − 1) 99...99︸ ︷︷ ︸
n−j

(9− a1)...(9− aj)(10− aj),

which obviously has the sum of digits equal to 9n.

The previous result is by no means hard, but we will see that it can

be the key in many situations. A first application is:

8. Compute s(9 · 99 · 999 · ... · 99...99︸ ︷︷ ︸
2n

).

USAMO, 1992

Solution. The problem in trivial if we know the previous result. We

have

N = 9 · 99 · 999 · ... · 99...99︸ ︷︷ ︸
2n−1

< 101+2+...+2n−1
< 102n − 1

so s(99...99︸ ︷︷ ︸
2n

N) = 9 · 2n.

However, there are very hard applications of this apparently unim-

portant result, such as the following problem.

9. Prove that for any n there is a positive integer n which is divisible

by its sum of digits.

IMO Shortlist, 1998

Solution. Only to assure our readers that this problem did not ap-

pear on the ISL out of nowhere, such numbers are called Niven numbers

and they are an important research source in number theory. Now, let’s

solve it. We will see that constructing such a number is hard. First, we
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will get rid of the case n = 3k, when we can take the number 11...11︸ ︷︷ ︸
n

(it

can be easily proved by induction that 3k+2|103k − 1).

Due to the trick that we should search numbers with many equal

digits and the last result, we decide that the required number p should

be aa...aa︸ ︷︷ ︸
s

b · (10t − 1), with aa...aa︸ ︷︷ ︸
s

b ≤ 10t − 1. This number will have

s+ t+1 digits and its sum of digits will be 9t. Therefore, we will require

s + t = n − 1 and 9t| aa...aa︸ ︷︷ ︸
s

b · (10t − 1). We now use the fact that

for t a power of 3, 9t|10t − 1. So, let us take t = 3k where k is chosen

such that 3k < n < 3k+1. If we also take in account the condition

aa...aa︸ ︷︷ ︸
s

b ≤ 10t − 1, the choice p = 11...11︸ ︷︷ ︸
n−3k−1

2(103k − 1) when n ≤ 2 · 3k

and p = 22...22︸ ︷︷ ︸
2·3k

(102·3k − 1) otherwise becomes natural.

We continue our investigations in finding suitable techniques for

problems involving sum of digits with a very beautiful result. The follow-

ing result turned out to have several consequences, most of them being

very hard.

Statement. Any multiple of 11...11︸ ︷︷ ︸
k

has sum of digits at least k.

Proof. We will use the extremal principle. Suppose by way of con-

tradiction that the statement is false and take M to be the smallest mul-

tiple of a such that s(M) < k, where a = 11...11︸ ︷︷ ︸
k

. Note that s(ia) = ik

for i = 1, 2, ..., 9. So M ≥ 10a > 10k. Therefore, M = a1a2...ap, with

p ≥ k + 1 and ap 6= 0. Take the number N = M − 10p−ka. Obviously, N

is a multiple of a. We will try to prove that s(N) < k. In this way, we

would contradict the minimality of M and the proof would be complete.

But this is not hard at all since if ak+1 < 9, we have s(N) = s(M) < k

and if ak+1 = 9, we have s(N) < s(M) < k.
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We will show 3 applications of this fact, which might seem simple,

but which might be unsolvable without it.

10. Prove that for every k, we have

lim
n→∞

s(n!)
lnk lnn

= ∞

Gabriel Dospinescu

Solution. Due to the simple fact that 10blg nc − 1 ≤ n ⇒ 10blg nc −
1|n!, we have that s(n!) ≥ blg nc, from which our conclusion follows

easily.

11. Let S be the set of positive integers whose decimal representation

contains only of at most 1988 1-s and the rest 0-s. Prove that there is a

positive integer which does not divide any member of S.

Tournament of Towns, 1988

Solution. Again, the solution follows directly from our result. We

can choose the number 101989 − 1, whose multiples have sum of digits

greater than 1988.

12. Prove that for any k > 0, there is an infinite arithmetical se-

quence having the ratio relatively prime to 10, such that all its members

have the sum of digits greater than k.

IMO Shortlist, 1999

Solution. Let us remind that this is the last problem of ISL 1999,

so the hardest. The official solution is indeed one for such a problem.

But, due to our ”theorem” we can chose the sequence an = n(10m − 1),

where m > k and we are done.

Now, as a final proof of the utility of these two results, we will present

a hard, but beautiful, problem from the USAMO.

13. Let n be a fixed positive integer. Denote by f(n) the smallest k

for which one can find a set X ⊂ Z+ of cardinality n with the property
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that

s

(∑
x∈Y

x

)
= k

for all nonempty subsets Y of X. Prove that C1 lg n < f(n) < C2 lg n

for some constants C1 and C2.

Gabriel Dospinescu and Titu Andreescu, USAMO 2005

Solution. We will prove that

blg(n + 1)c ≤ f(n) ≤ 9 lg
⌈

n(n + 1)
2

+ 1
⌉

,

which is enough to establish our claim. Let l be the smallest integer such

that

10l − 1 ≥ n(n + 1)
2

.

Consider the set X = {j(10l−1) : 1 ≤ j ≤ n}. By the previous inequality

and our first statement, it follows that

s

(∑
x∈Y

x

)
= 9l

for all nonempty subsets Y of X, so f(n) ≤ 9l and the RHS is proved.

Let m be the largest integer such that n ≥ 10m − 1. We will use the

following well-known

Lemma. Any set M = {a1, a2, ..., am} has a nonempty subset whose

sum of elements is divisible by m.

Proof. Consider the sums a1, a1 + a2,..., a1 + a2 + ...+ am. If one of

then is a multiple of m, them we are done. Otherwise, there are 2 of them

congruent mod m, say the i-th and the j-th. Then, m|ai+1+ai+2+...+aj

so we are done.

From the lemma, it follows that any set X with n elements has a

subset, say Y , whose sum of elements is divisible by 10m − 1. By our
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second statement, it follows that

s

(∑
x∈Y

x

)
≥ m ⇒ f(n) ≥ m,

and the proof is complete.

The last solved problem is one we consider to be very hard, and

which uses different techniques than the ones we have mentioned so far.

14. Let a, b ∈ Z+ such that s(an) = s(bn) for all n ∈ Z+. Prove that

lg a− lg b ∈ Z.

Adrian Zahariuc and Gabriel Dospinescu

Solution. We start with an observation. If (max{a, b}, 10) = 1, then

the problem becomes trivial. Suppose a = max{a, b}. Then, by Euler’s

theorem, a|10ϕ(a) − 1, so there is an n such that an = 10ϕ(a) − 1 and

since numbers consisting only of 9-s have the sum of digits greater than

all previous numbers, it follows that an = bn, so a = b.

Let us solve now the harder problem. For any k ≥ 1, there is a nk

such that 10k ≤ ank ≤ 10k + a− 1. It follows that s(ank) is bounded, so

s(bnk) is bounded as well. On the other hand,

10k b

a
≤ bnk < 10k b

a
+ b,

so, for sufficiently large p, the first (nonzero) digits of b/a are exactly

the same as the first p digits of bnk for large enough k. This means the

the sum of the first p digits of b/a is bounded, which could only happen

when this fraction has finitely many decimals. Analogously, we can prove

the same result about a/b.

Let a = 2x5ym and b = 2z5tm′, where (m, 10) = (m′, 10)=1. It fol-

lows that m|m′ and m′|m, so m = m′. Now, we can write the hypothesis

as

s(2z5umn2c−x5c−y) = s(2x5ymn2c−x5c−y) = s(mn),∀c ≥ max{x, y}
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Now, if p = max{z + c−x, u+ c− y}−min{z + c−x, u+ c− y}, we get

that there is a k ∈ {2, 5} such that s(mn) = s(mkpn) for all n ∈ Z+. It

follows that

s(m) = s(kpm) = s(k2pm) = s(k3pm) = ...

Let t = ap, so lg t ∈ R−Q unless p = 0. Now, we will use the following:

Lemma. If lg t ∈ R−Q, then for any sequence of digits, there is a

n ∈ Z+, such that tnm starts with the selected sequence of digits.

Proof. If we will prove that {{lg tnm} : n ∈ Z+} is dense in (0, 1),

then we are done. But lg tnm = n lg t + m and by Kronecker’s theorem

{{n lg t} : n ∈ Z+} is dense in (0, 1), so the proof is complete.

The lemma implies the very important result that s(tnm) is un-

bounded for p 6= 0, which is a contradiction. So p = 0 and hence

z + c− x = u + c− y, so a = 10x−zb and the proof is complete.

This problem can be nicely extended to any base. The proof of the

general case is quite similar, although there are some very important

differences.

The upmetioned methods are just a point to start from in solving

such problems since the variety of problems involving sum of digits is

very large. The techniques are useful only when they are applied cre-

atively. Finally, we invite our readers to solve this proposed problems:

Proposed Problems

1. Prove that among any 39 there is one whose sum of digits is

divisible by 11.

USSR, 1961

2. Prove that among any 18 consecutive 2-digit numbers there is at

least one Niven number.
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Tournament of Towns, Training, 1997

3. Are there positive integers n such that s(n) = 1, 000 and s(n2) =

1, 000, 000?

USSR, 1985

4. Prove that for any positive integer n there are infinitely many

numbers m which do not contain any zero, such that s(n) = s(mn).

USSR, 1970

5. Find all x such that s(x) = s(2x) = s(3x) = ... = s(x2).

Kurschak, 1989

6. Are there arbitrarily long arithmetical sequences whose terms

have the same sum of digits? What about infinite aritmetical sequences?

***

7. Prove that

lim
n→∞

s(2n) = ∞.

***

8. Are there p ∈ Z[X] such that

lim
n→∞

s(p(n)) = ∞?

***

9. Prove that there are arbitrarily long sequences of consecutive

numbers which do not contain any Niven number.

***

10. We start with a perfect number, different form 6 (which is equal

to the sum of its divisors, except itself), and calculate its sum of digits.

Then, we calculate the sum of digits of the new number and so on. Prove

that we will eventually get 1.

***
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11. Prove that there are infinitely many x ∈ Z+ such that

s(x) + s(x2) = s(x3).

Gabriel Dospinescu

12. a, b, c and d are primes such that 2 < a ≤ c and a 6= b. We now

that there is one M ∈ Z such that the numbers an + b and cn + d have

the same sum of digits for any n > M and base between 2 and a − 1.

Prove that a = c and b = d.

Gabriel Dospinescu

13. Let (an)n≥1 be a sequence such that s(an) ≥ n. Prove that for

any n, we have
1
a1

+
1
a2

+ ... +
1
an

< 3.2

Can we replace 3.2 by 3?

Laurentiu Panaitopol

14. Prove that one can find n1 < n2 < ... < n50 such that

n1 + s(n1) = n2 + s(n2) = ... = n50 + s(n50)

Poland, 1999

15. Study whether we can choose the numbers in the previous prob-

lem such that n2 − n1 = n3 − n2 = ... = n50 − n49.

Gabriel Dospinescu

16. Define f(n) = n + s(n). A number m is called special if there

is a k such that f(k) = m. Prove that there are infinitely many special

numbers 10n + b iff b− 1 is special.

Christopher D. Long

17. Find a Niven number with 100 digits.

Sankt Petersburg, 1990
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18. Let S be a set such that for any α ∈ R−Q, there is a number n ∈
Z+ such that bαnc ∈ S. Prove that S contains numbers with arbitrarily

large sum of digits.

Gabriel Dospinescu

19. Let a be a positive integer such that s(an + n) = 1 + s(n) for

any n > M , where M is given. Prove that a is a power of 10.

Gabriel Dospinescu

20. Let k ∈ Z+. Prove that there is a positive integer m such that

the equation n + s(n) = m has exactly k solutions.

Mihai Manea, Romanian IMO TST, 2003

21. Are there 19 positive integers with the same sum of digits, which

add up to 1999?

Rusia, 1999

22. Let a, b > 0. Prove that the sequence s(ban + bc) contains a

constant subsequence.

Laurentiu Panaitopol, Romanian IMO TST, 2002

23. If s(n) = 100 and s(44n) = 800, find s(3n).

Rusia, 1999

24. Find the smallest positive integer which can be expressed at the

same time as the sum of 2002 numbers with the same sum of digits and

as the sum of 2003 numbers with the same sum of digits.

Rusia, 2002

25. Prove that ∑
n≥1

s(n)
n(n + 1)

=
10
9

ln 10.

O. Shallit
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Open Questions

1. For any a > 1, we have

lim
n→∞

s(an) = ∞

(proved only for a couple of values, namely 2, 4, 6, 8).

2. Is it true that

lim
n→∞

s(n!)
n ln lnn

= ∞?

3. Let a, b ∈ Z+ such that s(an) = s(bn) for all n ∈ Z+. Prove that

lg a− lg b ∈ Z.

4. Prove that for any n, there are a, b ∈ Z such that lg a − lg b /∈ Z
with the property that s(ak) = s(bk) for any k ∈ {1, 2, ..., n}.

5. Is it true that

lim
n→∞

s(2n)
lnn

= ∞?
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ANALYSIS AGAINST NUMBER THEORY?

”Olympiad problems can be solved without the aid of analysis or

linear algebra” is a sentence always heard when speaking about the el-

ementary problems given in contests. This is true, but the true nature

and essence of some of these problems is in analysis and this is the reason

for which such type of problems are always the highlight of a contest.

Their elementary solutions are very tricky and sometimes extremely dif-

ficult, while using analysis they can be solved quickly. Well, of course,

”quickly” only if you see the sequence that hides after each problem.

Practically, our aim is to exhibit convergent sequences formed by in-

teger numbers. These sequences must become constant and from here

the problem is much easier. The difficulty is in finding those sequences.

Sometimes, this is easy, but most of the time this is a very difficult task.

We will develop our skills in ”hunting” these sequences by solving first

some easy problems (anyway, ”easy” is a relative concept: try to solve

them elementary and you will see if they really are easy) and after that

we will attack the chestnuts.

As usual, we begin with a classic beautiful problem, which has lots

of applications and extensions.

Example 1. Let f, g ∈ Z[X] be two non-constant polynomials such

that f(n)|g(n) for an infinite natural numbers n. Prove that f divides g

in Q[X].

Solution. Indeed, we need to look at the remainder of g when di-

vided with f in Q[X]! Let us write g = fh+r, were h, r are polynomials

from Q[X] and deg r < deg f . Now, multiplying by the common denom-

inator of all coefficients of polynomials h, r, the hypothesis becomes:

there exists two infinite sequences (an)n≥1, (bn)n≥1 of integer numbers

and a positive integer N such that bn = N
r(an)
f(an)

(we could have some
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problems with the roots of f , but they are in finite number and the

sequence (an)n≥1 tends to infinity, so from a certain point, an is not a

root of f). Since deg r < deg f , it follows that
r(an)
f(an)

→ 0, thus (bn)n≥1

is a sequence of integer numbers that tends to 0. This implies that from

a certain point, all the terms of these sequence are 0. Well, this is the

same as r(an) = 0 from a certain point n0, which is practically the same

thing with r = 0 (don’t forget that any non-zero polynomial has only a

finite number of roots!). But in this moment the problem is solved.

The next problem we are going to discuss is a particular case of a

much more general and classical result: if f is a polynomial with integer

coefficients, k > 1 is a natural number and k
√

f(n) ∈ Q for all natural

numbers n, then there exists a polynomial g ∈ Q[X] such that f(x) =

gk(x). We won’t discuss here this general result (the reader will find a

proof in the chapter about arithmetic properties of polynomials).

Example 2. Let a 6= 0, b, c be integers such that for any natural

number n, the number an2 + bn+ c is a perfect square. Prove that there

exist x, y ∈ Z such that a = x2, b = 2xy, c = y2.

Solution. Let us begin by writing an2 + bn + c = x2
n for a certain

sequence of nonnegative integers (xn)n≥1. We could expect that xn−n
√

a

converges. And yes, it converges, but it’s not a sequence of integers, so

the convergence is useless. In fact, it’s not that useless, but we need

another sequence. The easiest way is to work with (xn+1−xn)n≥1, since

this sequence certainly converges to
√

a (the reader has already noticed

why it wasn’t useless to find that xn−n
√

a is convergent; we used this to

establish the convergence of (xn+1−xn)n≥1). This time, the sequence is

formed by integer numbers, so it is constant from a certain point. Thus,

we can find a number M such that if n ≥ M then xn+1 = xn+
√

a. Thus,

a must be a perfect square, let us say a = x2. A simple induction shows

that xn = xM + (n−M)x and so (xM −Mx + nx)2 = x2n2 + bn + c for

234



all n ≥ M . A simple identification of coefficients finishes the solution,

since we can take y = xM −Mx.

The following problem is based on the same idea, but it really doesn’t

seem to be related with mathematical analysis. In fact, as we will see,

it is closely related to the concept of convergence.

Example 3. Let a, b, c > 1 be positive integers such that for any

positive integer n there exists a positive integer k such that ak+bk = 2cn.

Prove that a = b.

Laurentiu Panaitopol

Solution. What does the problem say in fact? That we can find a se-

quence of positive integers (xn)n≥1 such that axn+bxn = 2cn. What could

be the convergent sequence here? We see that (xn)n≥1 is appreciatively

kn for a certain constant k. Thus, we could expect that the sequence

(xn+1 − xn)n≥1 converges. Let us see if this is true or not. From where

could we find xn+1−xn? Certainly, by writing that axn+1 +bxn+1 = 2cn+1

and after that considering the value
axn+1 + bxn+1

axn + bxn
= c. Now, let us sup-

pose that a > b and let us write
axn+1 + bxn+1

axn + bxn
= c in the form

axn+1−xn

1 +
(

b

a

)xn+1

1 +
(

b

a

)xn
= c,

from where it is easy to see that axn+1−xn converges to c. Why is it so

easy? It would be easy if we could show that xn → ∞. Fortunately,

this is immediate, since 2axn > 2cn ⇒ xn > n loga c. So, we found

that axn+1−xn converges. Being a sequence of integer numbers, it must

become constant, so there exist M such that for all n ≥ M we have
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axn+1−xn = c. This means that for all n ≥ M we also have

1 +
(

b

a

)xn+1

1 +
(

b

a

)xn
= 1.

But this is impossible, since a > b. Thus, our assumption was wrong

and we must have a ≤ b. Due to symmetry in a and b, we conclude that

a = b.

Another easy example is the following problem, in which finding the

right convergent sequence of integers in not difficult at all. But, attention

must be paid to details!

Example 4. Let a1, a2, . . . , ak be positive real numbers such that

at least one of them is not an integer. Prove that there exits infinitely

many natural numbers n such that n and [a1n] + [a2n] + · · ·+ [akn] are

relatively prime.

Gabriel Dospinescu, Arhimede Magazine

Solution. Of course, the solution of such a problem is better to be

indirect. So, let us assume that there exists a number M such that for all

n ≥ M the numbers n and [a1n] + [a2n] + · · ·+ [akn] are not relatively

prime. Now, what are the most efficient numbers n to be used? Yes,

they are the prime numbers, since if n is prime and it is not relatively

prime with , [a1n] + [a2n] + · · · + [akn], then it must divide [a1n] +

[a2n] + · · · + [akn]. This suggests us to consider the sequence of prime

numbers (pn)n≥1. Since this sequence is infinite, there is a number N

such that if n ≥ N then pn ≥ M . According to our assumption, this

implies that for all n ≥ N there exist a natural number xn such that

[a1pn]+[a2pn]+ · · ·+[akpn] = xnpn. And now, you have already guessed

what is the convergent sequence! Yes, it is (xn)n≥N . This is obvious,

since
[a1pn] + [a2pn] + · · ·+ [akpn]

pn
tends to n ≥ Na1 + a2 + · · · + ak.
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Thus, we can find a number P such that for xn = a1 + a2 + · · ·+ ak for

all n ≥ P . But this is the same as {a1pn}+ {a2pn}+ · · ·+ {akpn} = 0.

Of course, this says that aipn ∈ Z for all i = 1, k and n ≥ P . Well,

the conclusion is immediate: ai ∈ Z for all i = 1, k, which contradicts

the hypothesis. Consequently, we were wrong again and the problem

statement is right!

Step by step, we start to have some experience in ”guessing” the

sequences. Thus, it’s time to solve some more difficult problems. The

next problem we are going to discuss may seem obvious after reading

the solution. In fact, it’s just that type of problem whose solution is very

short, but very hard to find.

Example 5. Let a, b ∈ Z such that for all natural numbers n the

number a · 2n + b is a perfect square. Prove that a = 0.

Poland TST

Solution. Again, we argue by contradiction. Suppose that a 6= 0.

Then, of course, a > 0, otherwise for large values of n the number

a ·2n+b is negative. According to the hypothesis, there exists a sequence

of positive integers (xn)n≥1 such that for all natural numbers n, xn =
√

a · 2n + b. Then, a direct computation shows that lim
n→∞

(2xn−xn+2) =

0. This implies the existence of a natural number N such that for all

n ≥ P we have 2xn = xn+2. But 2xn = xn+2 is equivalent with b = 0.

Then, a and 2a are both perfect squares, which is impossible for a 6= 0.

This shows, as usually, that our assumption was wrong and indeed a = 0.

A classical result of Schur states that for any non-constant polyno-

mial f with integer coefficients, the set of prime numbers dividing at

least one of the numbers f(1), f(2), f(3), . . . is infinite. The following

problem is a generalization of this result.

Example 6. Suppose that f is a polynomial with integer coefficients

and (an) is a strictly increasing sequence of natural numbers such that
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an ≤ f(n) for all n. Then the set of prime numbers dividing at least one

term of the sequence is infinite.

Solution. The idea is very nice: for any finite set of prime numbers

p1, p2, . . . , pr and any k > 0, we have∑
α1,α2,...,αN∈Z+

1

pkα1
1 . . . pkαN

N

< ∞.

Indeed, it suffices to remark that we have actually

∑
α1,α2,...,αN∈Z+

1

pkα1
1 . . . pkαN

N

N∏
j=1

∑
i≥0

1
pki

j

=
n∏

j=1

pk
j

pk
j − 1

.

On the other hand, by taking k =
1

2 deg(f)
we clearly have

∑
n≥1

1
(f(n))k

= ∞.

Thus, if the conclusion of the problem is not true, we can find

p1, p2, . . . , pr such that any term of the sequence is of the form

pkα1
1 . . . pkαN

N and thus∑
n≥1

1
ak

n

≤
∑

α1,α2,...,αN∈Z+

1

pkα1
1 . . . pkαN

N

< ∞.

On the other hand, we also have∑
n≥1

1
ak

n

≥
∑
n≥1

1
(f(n))k

= ∞,

which is clearly impossible.

The same idea is employed in the following problem.

Example 7. Let a, b ≥ 2 be natural numbers. Prove that there is

a multiple of a which contains all digits 0, 1, . . . , b − 1 when written in

base b.

Adapted after a Putnam problem
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Solution. Let’s suppose the contrary. Then any multiple of a misses

at least a digit when written in base b. Since the sum of inverses of all

multiples of a diverges (because 1+
1
2

+
1
3

+ · · · = ∞), it suffices to show

that the sum of inverses of all natural numbers missing at least one digit

in base b is convergent and we will reach a contradiction. But of course,

it suffices to prove it for a fixed (but arbitrary) digit j. For any n ≥ 1,

there are at most (b − 1)n numbers which have n digits in base b, all

different from j. Thus, since each one of them is at least equal to bn−1,

the sum of inverses of numbers that miss the digit j when written in base

b is at most equal to
∑

n

b

(
b− 1

b

)n

, which converges. The conclusion

follows.

We return to classical problems to discuss a beautiful problem, that

appeared in the Tournament of the Towns in 1982, in a Russian Team

Selection Test in 1997 and also in the Bulgarian Olympiad in 2003. It’s

beauty explains probably the preference for this problem.

Example 8. Let f ∈ Z[X] be a polynomial with leading coefficient

1 such that for any natural number n the equation f(x) = 2n has at

least one natural solution. Prove that deg f = 1.

Solution. So, the problem states that there exists a sequence of

positive integers (xn)n≥1 such that f(xn) = 2n. Let us suppose that

deg f = k > 1. Then, for large values of x, f(x) behaves like xk. So,

trying to find the right convergent sequence, we could try first to ”think

big”: we have xk
n
∼= 2n, that is for large n, xn behaves like 2

n
k . Then,

a good possibly convergent sequence could be xn+k − 2xn. Now, the

hard part: proving that this sequence is indeed convergent. First, we

will show that
xn+k

xn
converges to 2. This is easy, since the relation
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f(xn+k) = 2kf(xn) implies

f(xn+k)
xk

n+k

(
xn+k

xn

)k

= 2k · f(xn)
xk

n

and since

lim
x→∞

f(x)
xk

= 1 and lim
n→∞

xn = ∞

(do you see why?), we find that indeed

lim
n→∞

xn+k

xn
= 2.

We will see that this will help us a lot. Indeed, let us write

f(x) = xk +
k−1∑
i=0

aix
i.

Then f(xn+k) = 2kf(xn) can be also written

xn+k − 2xn =

k−1∑
i=0

ai(2kxi
n − xi

n+k)

k−1∑
i=0

(2xn)ixk−i−1
n+k

But from the fact that lim
n→∞

xn+k

xn
= 2. it follows that the right-hand

side in the above relation is also convergent. So, (xn+k−2xn)n≥1 is con-

vergent and it follows that there exist M,N such that for all n ≥ M we

have xn+k = 2xn+N . But now the problem is almost done, since the last

result combined with f(xn+k) = 2kf(xn) yields f(2xn + N) = 2kf(xn)

for n ≥ M , that is f(2x + N) = 2kf(x). So, an arithmetical property

of the polynomial turned into an algebraic one using analysis. This al-

gebraic property helps us to immediately solve the problem. Indeed, we

see that if z is a complex root of f , then 2z + N, 4z + 3N, 8z + 7N, . . .

are all roots of f . Since f is non-zero, this sequence must be finite and

this can happen only for z = −N . Since −N is the only root of f , we

deduce that f(x) = (x + N)k. But since the equation f(x) = 22k+1 has
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natural roots, we find that 2
1
k ∈ N , which implies, contradiction. Thus,

our assumption was wrong and deg f = 1.

The idea of the following problem is so beautiful, that after reading

the solution the reader will have the impression that the problem is

trivial. Wrong! The problem is really difficult and to make again an

experiment, we will ask the reader to struggle a lot before reading the

solution. He will see the difficulty.

Example 9. Let π(n) be the number of prime numbers smaller than

or equal to n. Prove that there exist infinitely many numbers n such that

π(n)|n.

AMM

Solution. First, let us prove the following result, which is the key

of the problem.

Lemma. For any increasing sequence of positive integers (an)n≥1

such that lim
n→∞

an

n
= 0, the sequence

(
n

an

)
n≥1

contains all natural num-

bers. In particular, for infinitely many n we have that n divides an.

Proof. Even if it seems unbelievable, this is true and moreover the

proof is extremely short. Let m ≥ 1 be a natural number. Consider the

set A =
{

n ≥ 1| amn

mn
≥ 1

m

}
. This set contains and it is bounded, since

lim
n→∞

amn

mn
= 0. Thus it has a maximal element k. If

amk

mk
=

1
m

, then

m is in the sequence
(

n

an

)
n≥1

. Otherwise, we have am(k+1) ≥ amk ≥

k + 1, which shows that k + 1 is also in the set, contradiction with the

maximality of k. The lemma is proved.

Thus, all we need to show is that lim
n→∞

π(n)
n

= 0. Fortunately, this is

well-known and not difficult to prove. There are easier proofs than the

following one, but we prefer to deduce it from a famous and beautiful

result of Erdos.
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Erdos’s theorem. We have
∏
p≤n

p prime

p ≤ 4n.

The proof of this result is magnificient. The proof is by induction.

For small values of n it is clear. Now, assume the inequality true for all

values smaller than n and let us prove that
∏
p≤n

p prime

p ≤ 4n. If nis even,

we have nothing to prove, since∏
p≤n

p prime

=
∏

p≤n−1
p prime

p ≤ 4n−1 < 4n.

Now, assume that n = 2k + 1 and consider the binomial coefficient(
2k + 1

k

)
=

(k + 2) . . . (2k + 1)
k!

.

A simple application of the fact that

22k+1 =
∑
i≥0

(
2k + 1

i

)
shows that (

2k + 1
k

)
≤ 4k.

Thus, using the inductive hypothesis, we find that∏
p≤n

p prime

p ≤
∏

p≤k+1
p prime

p
∏

k+2≤p≤2k+1
p prime

p ≤ 4k+1 · 4k = 4n.

Now, the fact that lim
n→∞

π(n)
n

= 0 is trivial. Indeed, fix k ≥ 1. We

have for all large n the inequality

n lg 4 ≥
∑

k≤p≤n
p prime

lg p ≥ lg k(π(n)− π(k)),

which shows that

π(n) ≤ π(k)
n

+
lg 4
lg k

.
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This shows of course that lim
n→∞

π(n)
n

= 0. The problem is solved.

It is time now for the last problem, which is, as usual, very hard. We

don’t exaggerate if we say that the following problem is exceptionally

difficult.

Example 10. Let a, b > 1 be natural numbers such that for any

natural number n, an − 1|bn − 1. Prove that b is a natural power of a.

Marius Cavachi, AMM

Solution. This time we will be able to find the right convergent

sequence only after some double recurrences. Let us see. So, initially

we are given that there exists a sequence of positive integers (x1
n)n≥1

such that x1
n =

bn − 1
an − 1

Then, x1
n
∼=
(

b

a

)n

for large values of n. So, we

could expect that the sequence (x2
n)n≥1, x2

n = bx1
n−ax2

n+1 is convergent.

Unfortunately,

x2
n =

bn+1(a− 1)− an+1(b− 1) + a− b

(an − 1)(an+1 − 1)
,

which is not necessarily convergent. But... if we look again at this

sequence, we see that for large values of n it grows like
(

b

a2

)n

, so

much slower. And this is the good idea: repeat this procedure until

the final sequence behaves like
(

b

ak+1

)n

, where k is chosen such that

ak ≤ b < ak+1. Thus, the final sequence will converge to 0. Again,

the hard part has just begun, since we have to prove that if we define

xi+1
n = bxi

n− aixi
n+1 then lim

n→∞
xk+1

n = 0. This isn’t easy at all. The idea

is to compute x3
n and after that to prove the following statement: for

any i ≥ 1 the sequence (xi
n)n≥1 has the form

cib
n + ci−1a

(i−1)n + · · ·+ c1a
n + c0

(an+i−1 − 1)(an+i−2 − 1) . . . (an − 1)

for some constants c0, c1, . . . , ci. Proving this is not so hard, the hard part

was to think about it. How can we prove the statement otherwise than by
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induction? And induction turns out to be quite easy. Supposing that the

statement is true for i, then the corresponding statement for i+1 follows

from xi+1
n = bxi

n − aixi
n+1 directly (note that to make the difference, we

just have to multiply the numerator cib
n+ci−1a

(i−1)n+· · ·+c1a
n+c0 with

b and an+i−1. Then, we proceed in the same way with the second fraction

and the term bn+1an+i will vanish). So, we have found a formula which

shows that as soon as ai > b we have lim
n→∞

xi
n = 0. So, we have deduced

that lim
n→∞

xk+1
n = 0. Another step of the solution is to take the minimal

index j such that lim
n→∞

xj
n = 0. Obviously, j > 1 and the recurrence

relation xi+1
n = bxi

n − aixi
n+1 shows that xi

n ∈ Z for all n, i. Thus, there

exists M such that whenever n ≥ M we have xj
n = 0. This is the same

as bxj−1
n = ajxj−1

n+1 for all n ≥ M , which implies xj−1
n =

(
b

aj

)n−M

xj−1
M

for all n ≥ M . Let us suppose that b is not a multiple of a. Since(
b

aj

)n−M

xj−1
M ∈ Z for all n ≥ M , we must have xj−1

M = 0 and so

xj−1
n = 0 for n ≥ M , which means lim

n→∞
xj

n = 0. But this contradicts

the minimality of j. Since we have reached a contradiction, we must

have a|b. Let us write b = ca. Then, the relation an − 1|bn − 1 implies

an − 1|cn − 1. And now are finally done. Why? We have just seen that

an − 1|cn − 1 for all n ≥ 1. But our previous argument applied for c

instead of b shows that a|c. Thus, c = ad and we deduce again that a|d.

Since this process cannot be infinite, b must be a power of a.

It worth saying that there exist an even stronger result: it is enough

to suppose that an − 1|bn − 1 for an infinite number n, but this is a

much more difficult problem. It follows from a result found by Bugeaud,

Corvaja and Zannier in 2003:

If a, b > 1 are multiplicatively independent in Q∗ (that is loga b 6∈ Q),

then for any ε > 0 there exists n0 = n0(a, b, ε) such that gcd(an−1, bn−
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1) < 2εn for all n ≥ n0. Unfortunately, the proof is too advanced to be

presented here.

Problems for training

1. Let f ∈ Z[X] be a polynomial of degree k such that for all n ∈ N
we have k

√
f(n) ∈ Z. Prove that there exists integer numbers a, b such

that f(x) = (ax + b)k.

2. Find all arithmetic progressions of positive integers (an)n≥1 such

that for all n ≥ 1 the number a1 + a2 + · · ·+ an is a perfect square.

Laurentiu Panaitopol, Romanian Olympiad 1991

3. Let p be a polynomial with integer coefficients such that there

exists a sequence of pair wise distinct positive integers (an)n≥1 such

that p(a1) = 0, p(a2) = a1, p(a3) = a2, . . . . Find the degree of this

polynomial.

Tournament of the Towns, 2003

4. Let f, g : N∗ → N∗ two functions such that |f(n)− n| ≤ 2004
√

n

and n2 + g2(n) = 2f2(n). Prove that if f or g is surjective, then these

functions have infinitely many fixed points.

Gabriel Dospinescu, Moldova TST 2004

5. Let a, b be natural numbers such that for any natural number n,

the decimal representation of a + bn contains a sequence of consecutive

digits which form the decimal representation of n (for example, if a =

600, b = 35, n = 16 we have 600 + 16 · 35 = 1160). Prove that b is a

power of 10.

Tournament of the Towns, 2002

6. Let a, b > 1 be positive integers. Prove that for any given k > 0

there are infinitely many numbers n such that ϕ(an + b) < kn, where ϕ

is the Euler totient function.
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Gabriel Dospinescu

7. Let b an integer at least equal to 5 and define the number

xn = 11 . . . 1︸ ︷︷ ︸
n−1

22 . . . 2︸ ︷︷ ︸
n

5 in base b. Prove that xn is a perfect square for

all sufficiently large n if and only if b = 10.

Laurentiu Panaitopol, IMO Shortlist 2004

8. Find all triplets of integer numbers a, b, c such that for any positive

integer n, a · 2n + b is a divisor of cn + 1.

Gabriel Dospinescu

11. Suppose that a is a real number such that all numbers

1a, 2a, 3a, . . . are integers. Then prove that a is also integer.

Putnam

12. Find all complex polynomials f having the property: there exists

a ≥ 2 a natural number such that for all sufficiently large n, the equation

f(x) = an2
has at least a positive rational solution.

Gabriel Dospinescu, Revue de Mathematiques Speciales

13. Let f be a complex polynomial having the property that for all

natural number n, the equation f(x) = n has at least a rational solution.

Then f has degree at most 1.

Mathlinks Contest

14. Let A be a set of natural numbers, which contains at least one

number among any 2006 consecutive natural numbers and let f a non-

constant polynomial with integer coefficients. Prove that there exists a

number N such that for any n ≥ N there are at least
√

ln lnn different

prime numbers dividing the number
∏

N≤k≤n
k∈A

f(k).

Gabriel Dospinescu
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15. Prove that in any strictly increasing sequence of positive integers

(an)n≥1 which satisfies an < 100n for all n, one can find infinitely many

terms containing at least 1986 consecutive 1.

Kvant

16. Any infinite arithmetical progression contains infinitely many

terms that are not powers of integers.

17. Find all a, b, c such that for all sufficiently large n, the number

a · 4n + b · 6n + c · 9n is a perfect square.

18. Let f, g two real polynomials of degree 2 such that for any real

x, if f(x) is integer, so is g(x). Then there are integers m,n such that

g(x) = mf(x) + n for all x.

Bulgarian Olympiad

19. Try to generalize the preceding problem (this is for the die-

hards!!!).

20. Find all pairs of natural numbers a, b such that for every positive

integer n the number an + b is triangular if and only if n is triangular.

After a Putnam problem

21. Let (an)n≥1 be an infinite and strictly increasing sequence of

positive integers such that for all n ≥ 2002, an|a1 + a2 + · · · + an−1.

Prove that there exists n0 such that for all n ≥ n0 we have an = a1 +

a2 + · · ·+ an−1.

Tournament of the Towns, 2002

22. Find all real polynomials such that the image of any repunit is

also a repunit.

After a problem from Kvant
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23. Fie doua multimi finite de numere reale pozitive cu proprietatea

ca {∑
x∈A

xn| n ∈ R

}
⊂

{∑
x∈B

xn| n ∈ R

}
.

Sa se arate ca exista k ∈ R astfel incat A = {xk| x ∈ B}.

Gabriel Dospinescu
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QUADRATIC RECIPROCITY

For an odd prime p, define the function
(

a

p

)
: Z → {−1, 1} by(

a

p

)
= 1 if the equation x2 = a has at least a solution in Zp and, other-

wise,
(

a

p

)
= −1. In the first case, we say that a is a quadratic residue

modulo p, otherwise we say that it is a non quadratic residue modulo

p. This function is called Legendre’s symbol and plays a fundamental

role in number theory. Perhaps the most remarkable result involving

this symbol is Gauss’s quadratic reciprocity law. This states that for

different odd prime numbers p, q the following equality holds:(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

This is a nontrivial result whose proof will be sketched later. Until

then, we will unfold some easier properties of Legendre’s symbol. First,

let us present an useful theoretical (but not practical at all) way of

computing
(

a

p

)
due to Euler.

Theorem. The following identity is true:(
a

p

)
= a

p−1
2 (mod p).

We will prove this result and many other simple remarks concerning

quadratic residues in what follows. First, let us assume that
(

a

p

)
= 1

and consider x a solution of the equation x2 = a in Zp. Using Fermat’s

theorem, we find that a
p−1
2 = xp−1 = 1 (mod p). Thus the equality(

a

p

)
= a

p−1
2 (mod p) holds for all quadratic residues a modulo p. In

addition, for any quadratic residue we have a
p−1
2 = 1 (mod p). Now, we

will prove that there are exactly
p− 1

2
quadratic residues in Zp \ {0}.

This will enable us to conclude that quadratic residues are precisely the
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roots of the polynomial X
p−1
2 − 1 and also that non quadratic residues

are exactly the roots of the polynomial X
p−1
2 + 1 (from Fermat’s little

theorem). Note that Fermat’s little theorem implies that the polynomial

Xp−1 − 1 = (X
p−1
2 − 1)(X

p−1
2 + 1) has exactly p − 1 roots in the field

Zp. But in a field, the number of different zeros of a polynomial cannot

exceed its degree. Thus each of the polynomials X
p−1
2 − 1 and X

p−1
2 +1

has at most
p− 1

2
zeros in Zp. These two observations show that in fact

each of these polynomials has exactly
p− 1

2
zeros in Zp. Let us observe

next that there are at least
p− 1

2
quadratic residues modulo p. Indeed,

all numbers i2 (mod p) with 1 ≤ i ≤ p− 1
2

are quadratic residues and

they are all different. This shows that there are exactly
p− 1

2
quadratic

residues in Zp \ {0} and also proves Euler’s criterion.

We have said that Euler’s criterion is a very useful result. Indeed, it

allows a very quick proof of the fact that
(

a

p

)
: Z → {−1, 1} is a group

morphism. Indeed, we have(
ab

p

)
= (ab)

p−1
2 (mod p) = a

p−1
2 b

p−1
2 (mod p) =

(
a

p

)(
b

p

)
.

The relation
(

ab

p

)
=
(

a

p

)(
b

p

)
shows that while studying Le-

gendre’s symbol, it suffices to focus on the prime numbers only. Also,

the same Euler’s criterion implies that
(

a

p

)
=
(

b

p

)
whenever a ≡ b

(mod p).

It is now time to come back to Gauss’s celebrated quadratic reci-

procity law. First of all, we will prove a lemma (due to Gauss).

Lemma. Let p be an odd prime and let a ∈ Z such that gcd(a, p) = 1.

If m is the number of positive integers x such that x <
p

2
and

p

2
< ax

(mod p) < p, then
(

a

p

)
= (−1)m.
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Proof. Let x1, x2, . . . , xm be those numbers x for which x <
p

2
and

p

2
< ax (mod p) < p. Let k =

p− 2
2

− m and y1, . . . , yk all numbers

smaller than
p

2
, different from x1, x2, . . . , xm.

Observe that
p−1
2∏

x=1

(ax) = a
p−1
2

(
p− 1

2

)
! ≡

(
a

p

)(
p− 1

2

)
! (mod p).

On the other hand,
p−1
2∏

x=1

(ax) =
∏

ax (mod p)> p
2

(ax) (mod p)
∏

ax (mod p)< p
2

(ax) (mod p).

We clearly have∏
ax (mod p)> p

2

(ax) (mod p)
∏

ax (mod p)< p
2

(ax) (mod p)

=
m∏

i=1

axi (mod p)
k∏

j=1

ayi (mod p).

On the other hand, the numbers p − axi (mod p) and ayi (mod p)

give a partition of 1, 2, . . . ,
p− 1

2
(mod p). Indeed, it suffices to prove

that p − axi (mod p) 6= ayj (mod p), which is clearly true by the defi-

nition of xi, yj <
p

2
. Hence we can write

m∏
i=1

axi (mod p)
k∏

j=1

ayi (mod p)

= (−1)m
m∏

i=1

(p− axi (mod p))
k∏

j=1

ayj (mod p)

≡ (−1)m

p−1
2∏

i=1

i (mod p) = (−1)m

(
p− 1

2

)
! (mod p).

Combining these facts, we finally deduce that
(

a

p

)
= (−1)m.
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Using Gauss’s lemma, the reader will enjoy proving the next two

classical results.

Theorem. The identity
(

2
p

)
= (−1)

p2−1
8 holds for any odd prime

number p.

Theorem. (quadratic reciprocity law) For any different odd primes

p, q, the following identity holds:(
p

q

)(
q

p

)
= (−1)

p−1
2
· q−1

2 .

Using this powerful arsenal, we are now able to solve some interest-

ing problems. Most of them are merely direct applications of the above

results, but we think that they are still worthy not necessarily because

they appeared in various contests.

Example 1. Prove that the number 2n + 1 does not have prime

divisors of the form 8k − 1.

Vietnam TST 2004

Solution. Indeed, assume that p is a prime divisor of the form 8k−1

that divides 2n + 1. Of course, if n is even, the contradiction is im-

mediate, since in this case we would have −1 ≡ (2
n
2 )2 (mod p) and

so −1 = (−1)
p−1
2 =

(
−1
p

)
= 1. Now, assume that n is odd. Then

−2 ≡ (2
n+1

2 )2 (mod p) and so
(
−2
p

)
= 1. This can be also written in

the form
(
−1
p

)(
2
p

)
= 1, or (−1)

p−1
2

+ p2−1
8 = 1. Fortunately, if p is of

the form 8k − 1 the later cannot hold and this is the contradiction that

solves the problem.

Based on the same idea and with a bit more work, we arrive at the

following result.

Example 2. Prove that for any positive integer n, the number 23n
+1

has at least n prime divisors of the form 8k + 3.
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Gabriel Dospinescu

Solution. Using the result of the previous problem, we deduce that

2n + 1 does not have prime divisors of the form 8k + 7. We will prove

that if n is odd, then it has no prime divisors of the form 8k + 5 either.

Indeed, let p be a prime divisor of 2n + 1. Then 2n ≡ −1 (mod p) and

so −2 ≡ (2
n+1

2 )2 (mod p). Using the same argument as the one in the

previous problem, we deduce that
p2 − 1

8
+

p− 1
2

is even, which cannot

happen if p is of the form 8k + 5.

Now, let us solve the proposed problem. We will assume n > 2

(otherwise the verification is trivial). The essential observation is the

identity:

23n
+ 1 = (2 + 1)(22 − 2 + 1)(22·3 − 23 + 1) . . . (22·3n−1 − 23n−1

+ 1)

Now, we will prove that for all 1 ≤ i < j ≤ n − 1, gcd(22·3i − 23i
+

1, 22·3j − 23j
+1) = 3. Indeed, assume that p is a prime number dividing

gcd(22·3i − 23i
+ 1, 22·3j − 23j

+ 1) We will then have p|23i+1
+ 1. Thus,

23j ≡ (23i+1
)3

j−i−1 ≡ (−1)3
j−i−1 ≡ −1 (mod p),

implying

0 ≡ 22·3j − 23j
+ 1 ≡ 1− (−1) + 1 ≡ 3 (mod p).

This cannot happen unless p = 3. But since v3(gcd(22·3i − 23i
+

1, 22·3j − 23j
+ 1)) = 1 (as one can immediately check), it follows that

gcd(22·3i − 23i
+ 1, 22·3j − 23j

+ 1) = 3

and the claim is proved.

It remains to show that each of the numbers 22·3i − 23i
+ 1, with

1 ≤ i ≤ n − 1 has at least a prime divisor of the form 8k + 3 different

from 3. It would follow in this case that 23n
+1 has at least n−1 distinct

prime divisors of the form 8k+3 (from the previous remarks) and since it
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is also divisible by 3, the conclusion would follow. Fix i ∈ {1, 2, . . . , n−1}
and observe that any prime factor of 22·3i −23i

+1 is also a prime factor

of 23n
+ 1 and thus, from the first remark, it must be of the form 8k + 1

or 8k + 3. Because v3(22·3i − 23i
+ 1) = 1, it follows that if all prime

divisors of 22·3i − 23i
+ 1 except for 3 are of the form 8k + 1, then

22·3i − 23i
+ 1 ≡ 8 (mod 8), which is clearly impossible. Thus at least

a prime divisor of 22·3i − 23i
+ 1 is different from 3 and is of the form

8k + 3 and so the claim is proved. The conclusion follows.

At first glance, the following problem seems trivial. Far from being

true! It is actually very tricky, because brute force will take us nowhere.

In the framework of the above results, this should not be so difficult

now.

Example 3. Find a number n between 100 and 1997 such that

n|2n + 2.

APMO, 1997

Solution. If we search for odd numbers, then we will certainly fail

(actually, this result due to Sierpinski has been proved in the topic ”Look

at the exponent!”). So let us search for even numbers. The first step

would be choosing n = 2p, for some prime number p. Unfortunately this

cannot work by Fermat’s little theorem. So let us try setting n = 2pq,

with p, q different prime numbers. We need pq|22pq−1 + 1 and so we

must have
(
−2
p

)
=
(
−2
q

)
= 1. Also, using Fermat’s little theorem,

p|22q−1 + 1 and q|22p−1 + 1. A small verification shows that q = 3, 5, 7

are not good choices, so let us try q = 11. In this case we find p = 43

and so it suffices to show that pq|22pq−1 + 1 for q = 11 and p = 43.

This is immediate, since the hard work has already been completed: we

have shown that it suffices to have p|q2q−1, q|22p−1 + 1, and
(
−2
p

)
=
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(
−2
q

)
= 1 in order to have pq|22pq−1+1. But as one can easily check, all

these conditions are verified and the number 2 · 11 · 43 is a valid answer.

Were we wrong when choosing to present the following example? It

apparently has no connection with quadratic reciprocity, but let us take

a closer look.

Example 4. Let f, g : Z+ → Z+ functions with the properties:

i) g is surjective;

ii) 2f2(n) = n2 + g2(n) for all positive integers n.

If, moreover, |f(n)−n| ≤ 2004
√

n for all n, prove that f has infinitely

many fixed points.

Gabriel Dospinescu, Moldova TST, 2005

Solution. Let pn be the sequence of prime numbers of the form

8k + 3 (the fact that there are infinitely many such numbers is a trivial

consequence of Dirichlet’s theorem, but we invite the reader to find an

elementary proof). It is obvious that for all n we have(
2
pn

)
= (−1)

p2
n−1

8 = −1.

Using the condition i) we can find xn such that g(xn) = pn for all n. It

follows that 2f2(xn) = x2
n + p2

n, which can be rewritten as 2f2(xn) ≡ x2
n

(mod pn). Because
(

2
pn

)
= −1, the last congruence shows that pn|xn

and pn|f(xn). Thus there exist sequences of positive integers an, bn such

that xn = anpn, f(xn) = bnpn for all n. Clearly, ii) implies the relation

2b2
n = a2

n + 1. Finally, using the property |f(n)− n| ≤ 2004
√

n we infer

that
2004
√

xn
≥
∣∣∣∣f(xn)

xn
− 1
∣∣∣∣ = ∣∣∣∣ bn

an
− 1
∣∣∣∣ ,

that is

lim
n→∞

√
a2

n + 1
an

=
√

2.
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The last relation immediately implies that lim
n→∞

an = 1. Therefore,

starting from a certain rank, we have an = 1 = bn that is f(pn) = pn.

The conclusion now follows.

We continue with a difficult classical result, that often proves very

useful. It characterizes numbers that are quadratic residues modulo all

sufficiently large prime numbers. Of course, perfect square are such num-

bers, but how to prove that they are the only ones?

Example 5. Suppose that a ∈ N is not a perfect square. Then(
a

p

)
= −1 for infinitely many prime numbers p.

Solution. One may assume that a is square-free. Let us write a =

2eq1q2 . . . qn, where qi are different odd primes and e ∈ {0, 1}. Let us

assume first that n ≥ 1 and consider some odd distinct primes r1, . . . , rk

each of them different from q1, . . . , qn. We will show that there exists a

prime p, different from r1, . . . , rk, such that
(

a

p

)
= −1. Let s be a non

quadratic residue modulo qn.

Using the Chinese remainder theorem, we can find a positive integer

b such that 
b ≡ 1 (mod ri), 1 ≤ i ≤ k

b ≡ 1 (mod 8),

b ≡ 1qi, 1 ≤ i ≤ n− 1

b ≡ s (mod qn)

Now, write b = p1 . . . pm with pi odd primes, not necessarily distinct.

Using the quadratic reciprocity law, it follows immediately that

m∏
i=1

(
2
pi

)
=

m∏
i=1

(−1)
p2
i−1

8 = (−1)
b2−1

8 = 1

and
m∏

j=1

(
qi

pj

)
=

m∏
j=1

(−1)
pj−1

2
· qi−1

2

(
pj

qi

)
= (−1)

qi−1

2
· b−1

2

(
b

qi

)
=
(

b

qi

)
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for all i ∈ {1, 2, . . . , n}. Hence

m∏
i=1

(
a

pi

)
=

 m∏
j=1

(
2
pj

)2
n∏

i=1

m∏
j=1

(
qi

pj

)

=
n∏

i=1

(
b

qi

)
=
(

b

qn

)
=
(

s

qn

)
= −1.

Thus, there exists i ∈ {1, 2, . . . ,m} such that
(

a

pi

)
= −1. Because

b ≡ 1 (mod ri), 1 ≤ i ≤ k we also have pi ∈ {1, 2, . . . } \ {r1, . . . , rk} and

the claim is proved.

The only remaining case is a = 2. But this one is very simple, since it

suffices to use Dirichlet’s theorem to find infinitely many primes p such

that
p2 − 1

8
is odd.

As in other units, we will now focus on a special case. This time it is

a problem almost trivial in the above framework and almost impossible

to solve otherwise (we say almost because there is a beautiful, but very

difficult solution using analytical tools, that we will not present here).

Example 6. Suppose that a1, a2, . . . , a2004 are nonnegative integers

such that an
1 +an

2 + · · ·+an
2004 is a perfect square for all positive integers

n. What is the minimal number of such integers that must equal 0?

Gabriel Dospinescu, Mathlinks Contest

Solution. Suppose that a1, a2, . . . , ak are positive integers such that

an
1 + an

2 + · · · + an
k is a perfect square for all n. We will show that k

is a perfect square. In order to prove this, we will use the above result

and show that
(

k

p

)
= 1 for all sufficiently large prime p. This is not a

difficult task. Indeed, consider a prime p, greater than any prime divisor

of a1a2 . . . ak. Using Fermat’s little theorem, ap−1
1 +ap−1

2 + · · ·+ap−1
k ≡ k

(mod p), and since ap−1
1 +ap−1

2 + · · ·+ap−1
k is a perfect square, it follows

that
(

k

p

)
= 1. Thus k is a perfect square. And now the problem becomes
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trivial, since we must find the greatest perfect square smaller than 2004.

A quick computation shows that this is 442 = 1936 and so the desired

minimal number is 68.

Here is another nice application of this idea. The following example

is adapted after a problem given in Saint Petersburg Olympiad.

Example 7. Suppose that f ∈ Z[X] is a second degree polynomial

such that for any prime p there exists at least an integer n for which

p|f(n). Prove that f has rational zeros.

Solution. Let f(x) = ax2 + bx + c be this polynomial. It suffices

of course to prove that b2 − 4ac is a perfect square. This boils down

to proving that it is a quadratic residue modulo any sufficiently large

prime. Pick a prime number p and an integer n such that p|f(n). Then

b2 − 4ac ≡ (2an + b)2 (mod p)

and so (
b2 − 4ac

p

)
= 1.

This shows that our claim is true and finishes the solution.

Some of the properties of Legendre’s symbol can be also found in

the following problem.

Example 8. Let p be an odd prime and let

f(x) =
p−1∑
i=1

(
i

p

)
Xi−1.

a) Prove that f is divisible by X− 1 but not by (X− 1)2 if and only

if p ≡ 3 (mod 4);

b) Prove that if p ≡ 5 (mod 8) then f is divisible by (X − 1)2 and

not by (X − 1)3.

Romanian TST, 2004
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Solution. The first question is not difficult at all. Observe that

f(1) =
p−1∑
i=1

(
i

p

)
= 0

by the simple fact that there are exactly
p− 1

2
quadratic and non qua-

dratic residues in {1, 2, . . . p− 1}. Also,

f ′(1) =
p−1∑
i=1

(i− 1)
(

i

p

)
=

p−1∑
i=1

i

(
i

p

)
,

because f(1) = 0. The same idea of summing up in reversed order allows

us to write:
p−1∑
i=1

i

(
i

p

)
=

p−1∑
i=1

(p− i)
(

p− i

p

)

= (−1)
p−1
2

p−1∑
i=1

2(p− i)
(

i

p

)
= −(−1)

p−1
2 f ′(1)

(we used again the fact that f(1) = 0).

Hence for p ≡ 1 (mod 4) we must also have f ′(1) = 0. In this case

f is divisible by (X − 1)2. On the other hand, if p ≡ 3 (mod 4), then

f ′(1) =
p−1∑
i=1

i

(
i

p

)
≡

p−1∑
i=1

i =
p(p− 1)

2
≡ 1 (mod 2)

and so f is divisible by X − 1 but not by (X − 1)2.

The second question is much more technical, even though it uses the

same main idea. Observe that

f ′′(1) =
p−1∑
i=1

(i2 − 3i + 2)
(

i

p

)
=

p−1∑
i=1

i2
(

i

p

)
− 3

p−1∑
i=1

i

(
i

p

)
(once again we use the fact that f(1) = 0). Observe that the condition

p ≡ 5 (mod 8) implies, by a), that f is divisible by (X − 1)2 so actually

f ′′(1) =
p−1∑
i=1

i2
(

i

p

)
.
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Let us break this sum into two pieces and treat each of them inde-

pendently. Let us deal with
p−1
2∑

i=1

(2i)2
(

2i

p

)
= 4

(
2
p

) p−1
2∑

i=1

i2
(

i

p

)
.

Note that
p−1
2∑

i=1

i2
(

i

p

)
≡

p−1
2∑

i=1

i2 ≡

p−1
2∑

i=1

i =
p2 − 1

8
≡ 1 (mod 2),

so
p−1
2∑

i=1

(2i)2
(

2i

p

)
≡ ± (mod 8)

(actually, using the fact that
(

2
p

)
= (−1)

p2−1
8 , we obtain that its value

is −4). On the other hand,
p−1
2∑

i=1

(2i− 1)2
(

2i− 1
p

)
≡

p−1
2∑

i=1

(
2i− 1

p

)
(mod 8).

If we prove that the last quantity is a multiple of 8, then the problem

will be solved. But note that f(1) = 0 implies

0 =

p−1
2∑

i=1

(
2i

p

)
+

p−1
2∑

i=1

(
2i− 1

p

)
.

Also,

p−1
2∑

i=1

(
2i

p

)
= 1 +

p−3
2∑

i=1

(
2i

p

)
= 1 +

p−3
2∑

i=1

2
(

p− 1
2

− i

)
p



= 1 +

p−3
2∑

i=1

(
2i + 1

p

)
=

p−1
2∑

i=1

(
2i− 1

p

)
.

Therefore

p−1
2∑

i=1

(
2i− 1

p

)
= 0 and the problem is finally solved.
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Finally, a difficult problem.

Example 9. Find all positive integers n such that 2n − 1|3n − 1.

Solution. We will prove that n = 1 is the only solution to the

problem. Suppose that n > 1 is a solution. Then 2n − 1 cannot be a

multiple of 3, hence n is odd. Therefore, 2n ≡ 8 (mod 12). Because any

odd prime different from 3 is of one of the forms 12k±1, 12k±5 and since

2n − 1 ≡ 7 (mod 12), it follows that 2n − 1 has at least a prime divisor

of the form 12k ± 5, call it p. Obviously, we must have
(

3
p

)
= 1 and

using the quadratic reciprocity law, we finally obtain
(p

3

)
= (−1)

p−1
2 .

On the other hand
(p

3

)
=
(
±2
3

)
= −(±1). Consequently, −(±1) =

(−1)
p−1
2 = ±1, which is the desired contradiction. Therefore the only

solution is n = 1.

Problems for training

1. Prove that for any odd prime p, the smallest positive quadratic

non residue modulo p is smaller than 1 +
√

p.

2. Let p be a prime number. Prove that the following statements are

equivalent:

i) there is a positive integer n such that p|n2 − n + 3;

ii) there is a positive integer m such that p|m2 −m + 25.

Polish Olympiad

3. Let x1 = 7 and let xn+1 = 2x2
n − 1. Prove that 2003 does not

divide any term of the sequence.

Valentin Vornicu, Mathlinks Contest

4. Let p be a prime of the form 4k + 1. Compute

p−1∑
k=1

([
2k2

p

]
− 2

[
k2

p

])
.
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Korea TST 2000

5. Prove that the number 3n +2 does not have prime divisors of the

form 24k + 13.

Laurentiu Panaitopol, Gazeta Matematica

6. What is the number of solutions to the equation a2 + b2 = 1 in

Zp × Zp. What about the equation a2 − b2 = 1?

7. Suppose that p is an odd prime and that A,B are two different

non empty subsets of {1, 2, . . . , p− 1} for which

i) A ∪B = {1, 2, . . . , p− 1};
ii) If a, b are in the same set among A,B, then ab (mod p) ∈ A;

iii) If a ∈ A, b ∈ B, then ab ∈ B.

Find all such subsets A,B.

India

8. Let a, b, c be positive integers such that b2 − 4ac is not a perfect

square. Prove that for any n > 1 there are n consecutive positive integers,

none of which can be written in the form (ax2 + bxy + cy2)z for some

integers x, y and some positive integer z.

Gabriel Dospinescu

9. Let be integers relatively prime with an odd prime p. Prove that:
p−1∑
i=1

(
ai2 + bi

p

)
= −

(
a

p

)
.

10. Compute
p−1∑
k=1

(
f(k)

p

)
, where f is a polynomial with integral

coefficients and p is an odd prime.

11. Suppose that for a certain prime p, the values the polynomial

with integral coefficients f(x) = ax2 + bx+ c takes at 2p− 1 consecutive

integers are perfect squares. Prove that p|b2 − 4ac.

IMO Shortlist
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12. Suppose that φ(5m − 1) = 5n − 1 for a pair (m,n) of positive

integers. Here φ is Euler’s totient function. Prove that gcd(m,n) > 1.

Taiwan TST

13. Let p be a prime of the form 4k+1 such that p2|2p−2. Prove that

the greatest prime divisor q of 2p − 1 satisfies the inequality 2q > (6p)p.

Gabriel Dospinescu
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SOLVING ELEMENTARY INEQUALITIES WITH

INTEGRALS

Why are integral pertinent for solving inequalities? Well, when we

say integral, we say in fact area. And area is a measurable concept, a

comparable one. That is why there are plenty of inequalities which can

be solved with integrals, some of them with a completely elementary

statement. They seem elementary, but sometimes finding elementary

solutions for them is a real challenge. Instead, there are beautiful and

short solutions using integrals. Of course, the hard part is to find the

integral that hides after the elementary form of the inequality (and to

be sincere, the idea of using integrals to solve elementary inequalities

is practically inexistent in Olympiad books). First, let us state some

properties of integrals that we will use here.

1) For any integrable function f : [a, b] → R we have∫ b

a
f2(x)dx ≥ 0.

2) For any integrable functions f, g : [a, b] → R such that f ≤ g we

have ∫ b

a
f(x)dx ≤

∫ b

a
g(x)dx (monotony for integrals).

3) For any integrable functions f, g : [a, b] → R and any real numbers

α, β we have∫ b

a
(αf(x)+βg(x))dx = α

∫ b

a
f(x)dx+β

∫ b

a
g(x) (linearity of integrals).

Also, the well-known elementary inequalities of Cauchy-Schwarz,

Chebyshev, Minkowski, Hölder, Jensen, Young have corresponding in-

tegral inequalities, which are derived immediately from the algebraic

inequalities (indeed, one just have to apply the corresponding inequal-

ities for the numbers f

(
a +

k

n
(b− a)

)
, g

(
a +

k

n
(b− a)

)
, . . . with
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k ∈ {1, 2, . . . , n} and to use the fact that∫ b

a
f(x)dx = lim

n→∞

b− a

n

n∑
k=1

f

(
a +

k

n
(b− a)

)
.

The reader will take a look at the glossary if he doesn’t manage to

state them.

It seems at first glance that this is not a very intricate and difficult

theory. Totally false! We will see how strong is this theory of integration

and especially how hard it is to look beneath the elementary surface

of a problem. To convince yourself of the strength of the integral, take

a look at the following beautiful proof of the AM-GM inequality using

integrals. This magnificent proof was found by H. Alzer and published

in the American Mathematical Monthly.

Example 1. Prove that for any a1, a2, . . . , an ≥ 0 we have the in-

equality
a1 + a2 + · · ·+ an

n
≥ n
√

a1a2 . . . an.

Solution. Let us suppose that a1 ≤ a2 ≤ · · · ≤ an and let

A =
a1 + a2 + · · ·+ an

n
, B = n

√
a1a2 . . . an.

Of course, we can find an index k ∈ {1, 2, . . . , n − 1} such that

ak ≤ G ≤ ak+1. Then it is immediate to see that

A

G
− 1 =

1
n

k∑
i=1

∫ G

ai

(
1
t
− 1

G

)
dt +

1
n

n∑
i=k+1

∫ ai

G

(
1
G
− 1

t

)
dt

and the last quantity is clearly nonnegative, since each integral is non-

negative.

Truly wonderful, isn’t it? So, after all, integrals are nice! This is also

confirmed by the following problem, an absolute classic whose solution

by induction can be a real nightmare.
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Example 2. Prove that for any real numbers a1, a2, . . . , an the fol-

lowing inequality holds:
n∑

i=1

n∑
j=1

aiaj

i + j
≥ 0.

Poland Mathematical Olympiad

Solution. Now, we will see how easy is this problem if we manage

to handle integrals and especially to see from where they come. The

essential suggestion is the observation that

aiaj

i + j
=
∫ 1

0
aiajt

i+j−1dt.

And now the problem is solved. What follows are just formalities;

the hard part was translating the inequality. After that, we will decide

what is better to do. So,
n∑

i,j=1

aiaj

i + j
≥ 0

is equivalent to
n∑

i,j=1

∫ 1

0
aiajt

i+j−1dt ≥ 0,

or, using the linearity of the integrals, to∫ 1

0

 n∑
i,j=1

aiajt
i+j−1

 dt ≥ 0.

This form suggests us that we should use the first property, that is

we should find an integrable function f such that

f2(t) =
n∑

i,j=1

aiajt
i+j−1dt.

This isn’t hard, because the formula(
n∑

i=1

aixi

)2

=
n∑

i,j=1

aiajxixj
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solves the task. We just have to take

f(x) =
n∑

i=1

aix
i− 1

2 .

We continue the series of direct applications of classical integral in-

equalities with a problem proposed by Walther Janous and which may

also put serious problems if not attacked appropriately.

Example 3. Let t ≥ 0 and the sequence (xn)n≥1 defined by

xn =
1 + t + · · ·+ tn

n + 1
.

Prove that

x1 ≤
√

x2 ≤ 3
√

x3 ≤ 4
√

x4 ≤ . . .

Walther Janous, Crux Mathematicorum

Solution. It is clear that for t > 1 we have

xn =
1

t− 1

∫ t

1
undu

and for t < 1 we have

xn =
1

1− t

∫ t

1
undu.

This is how the inequality to be proved reduces to the more general

inequality

k

√√√√√∫ b

a
fk(x)dx

b− a
≤

k+1

√√√√√∫ b

a
fk+1(x)dx

b− a

for all k ≥ 1 and any nonnegative integrable function f : [a, b] → R.

And yes, this is a consequence of the Power Mean Inequality for integral

functions.

The following problem has a long and quite complicated proof by

induction. Yet, using integrals it becomes trivial.
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Example 4. Prove that for any positive real numbers x, y and any

positive integers m,n

(n− 1)(m− 1)(xm+n + ym+n) + (m + n− 1)(xmyn + xnym)

≥ mn(xm+n−1y + ym+n−1x).

Austrian-Polish Competition ,1995

Solution. We transform the inequality as follows:

mn(x− y)(xm+n−1 − ym+n−1) ≥ (m + n− 1)(xm − ym)(xn − yn) ⇔

xm+n−1 − ym+n−1

(m + n− 1)(x− y)
≥ xm − ym

m(x− y)
· xn − yn

n(x− y)

(we have assumed that x > y). The last relations can be immediately

translated with integrals in the form

(y − x)
∫ x

y
tm+n−2dt ≥

∫ x

y
tm−1dt

∫ x

y
tn−1dt.

And this follows from the integral form of Chebyshev inequality.

A nice blending of arithmetic and geometric inequality as well as

integral calculus allows us to give a beautiful short proof of the following

inequality.

Example 5. Let x1, x2, . . . , xk be positive real numbers and m,n

positive real numbers such that n ≤ km. Prove that

m(xn
1 + xn

2 + · · ·+ xn
k − k) ≥ n(xm

1 xm
2 . . . xm

k − 1).

IMO Shortlist 1985, proposed by Poland

Solution. Applying AM-GM inequality, we find that

m(xn
1 + · · ·+ xn

k − k) ≥ m(k k
√

(x1x2 . . . xk)n − k).

Let

P = k
√

x1x2 . . . xk.
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We have to prove that

mkPn −mk ≥ nPmk − n,

which is the same as
Pn − 1

n
≥ Pmk − 1

mk
.

This follows immediately from the fact that

P x − 1
x lnP

=
∫ 1

0
ext ln P dt.

We have seen a rapid but difficult proof for the following problem,

using the Cauchy-Schwarz inequality. Well, the problem originated by

playing around with integral inequalities and the following solution will

show how one can create difficult problems starting from trivial ones.

Example 6. Prove that for any positive real numbers a, b, c such

that a + b + c = 1 we have

(ab + bc + ca)
(

a

b2 + b
+

b

c2 + c
+

c

a2 + a

)
≥ 3

4
.

Gabriel Dospinescu

Solution. As in the previous problem, the most important aspect

is to translate the expression
a

b2 + b
+

b

c2 + c
+

c

a2 + a
in the integral

language. Fortunately, this isn’t difficult, since it is just∫ 1

0

(
a

(x + b)2
+

b

(x + c)2
+

c

(x + a)2

)
dx.

Now, using the Cauchy-Schwarz inequality, we infer that

a

(x + b)2
+

b

(x + c)2
+

c

(x + a)2
≥
(

a

x + b
+

b

x + c
+

c

a + x

)2

.

Using again the same inequality, we minor
a

x + b
+

b

x + c
+

c

a + x

with
1

x + ab + bc + ca
. Consequently,

a

(x + b)2
+

b

(x + c)2
+

c

(x + a)2
≥ 1

(x + ab + bc + ca)2
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and we can integrate this to find that

a

b2 + b
+

b

c2 + c
+

c

a2 + a
≥ 1

(ab + bc + ca)(ab + bc + ca + 1)
.

Now, all we have to do is to notice that

ab + bc + ca + 1 ≤ 4
3
.

Now, another question for the interested reader: can we prove the

general case (solved in Cauchy Schwarz’s inequality topic) using integral

calculus? It seems a difficult problem.

There is an important similarity between the following problem and

example 2, yet here it is much more difficult to see the relation with

integral calculus.

Example 7. Let n ≥ 2 and S the set of the sequences

(a1, a2, . . . , an) ⊂ [0,∞) which verify

n∑
i=1

n∑
j=1

1− aiaj

1 + j
≥ 0.

Find the maximum value of the expression
n∑

i=1

n∑
j=1

ai + aj

i + j
, over all

sequences from S.

Gabriel Dospinescu

Solution. Consider the function f : R → R, f(x) = a1 +a2x+ · · ·+
anxn−1. Let us observe that

n∑
i=1

n∑
j=1

aiaj

i + j
=

n∑
i=1

ai

 n∑
j=1

aj

i + j

 =
n∑

i=1

ai

∫ 1

0
xif(x)dx

=
∫ 1

0

(
xf(x)

n∑
i=1

aix
i−1

)
dx =

∫ 1

0
xf2(x)dx.
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So, if we denote M =
∑

1≤i,j≤n

1
i + j

, we infer that

∫ 1

0
xf2(x)dx ≤ M.

On the other hand, we have the identity
n∑

i=1

n∑
j=1

ai + aj

i + j
= 2

(
a1

2
+ · · ·+ an

n + 1
+ · · ·+ a1

n + 1
+ · · ·+ an

2n

)

= 2
∫ 1

0
(x + x2 + · · ·+ xn)f(x)dx.

This was the hard part: translating the properties of the sequences

in S and also the conclusion. Now, the problem becomes easy, since we

must find the maximal value of

2
∫ 1

0
(x + x2 + · · ·+ xn)f(x)dx

where ∫ 1

0
xf2(x)dx ≤ M.

Well, Cauchy-Schwarz inequality for integrals is the way to proceed.

Indeed, we have (∫ 1

0
(x + x2 + · · ·+ xn)f(x)dx

)2

=
(∫ 1

0

√
xf2(x)

√
x(1 + x + · · ·+ xn−1)2dx

)2

=
∫ 1

0
xf2(x)dx

∫ 1

0
(1 + x + · · ·+ xn−1)2dx ≤ M2.

This shows that
n∑

i=1

n∑
j=1

ai + aj

i + j
≤ 2M and now the conclusion easily

follows: the maximal value is 2
∑

1≤i,j≤n

1
i + j

, attained for a1 = a2 = · · · =

an = 1.
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Two more words about fractions. We have already said that bunching

is a mathematical crime. It is time to say it again. This is why we

designed this topic, to present a new method of treating inequalities

involving fractions. Some relevant examples will be treated revealing

that bunching could be a great pain for the reader wanting to use it.

Example 8. Prove that for any positive real numbers a, b, c the

following inequality holds:

1
3a

+
1
3b

+
1
3c

+
3

a + b + c
≥ 1

2a + b
+

1
2b + a

+
1

2b + c

+
1

2c + b
+

1
2c + a

+
1

2a + c
.

Gabriel Dospinescu

Solution. Of course, the reader has noticed that this is stronger

than Popoviciu’s inequality, so it seems that classical methods will have

no chances. And what if we say that this is Schur’s inequality revisited?

Indeed, let us write Schur’s inequality in the form:

x3 + y3 + z3 + 3xyz ≥ x2y + y2x + y2z + z2y + z2x + x2z

where x = ta−
1
3 , y = tb−

1
3 , z = tc−

1
3 and integrate the inequality as t

ranges between 0 and 1. And surprise... since what we get is exactly the

desired inequality.

In the same category, here is another application of this idea.

Example 9. Prove that for any positive real numbers a, b, c the

following inequality holds:

1
3a

+
1
3b

+
1
3c

+ 2
(

1
2a + b

+
1

2b + c
+

1
2c + a

)

≥ 3
(

1
a + 2b

+
1

b + 2c
+

1
c + 2a

)
.

Gabriel Dospinescu
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Solution. If the previous problem could be solved using bunching

(or not? Anyway, we haven’t tried), this one is surely impossible to solve

in this manner. With the experience from the previous problem, we see

that the problem asks in fact to prove that

x3 + y3 + z3 + 2(x2y + y2z + z2x) ≥ 3(xy2 + yz2 + zx2)

for any positive real numbers x, y, z.

Let us assume that x = min(x, y, z) and write y = x + m, z = x + n

for some nonnegative real numbers m,n. Simple computations show that

the inequality is equivalent to

2x(m2 −mn + n2) + (n−m)3 + m3 ≥ (n−m)m2.

Therefore, it suffices to prove that

(n−m)3 + m3 ≥ (n−m)m2,

which is the same as (via the substitution t =
n−m

m
) t3 + 1 ≥ t for all

t ≥ −1, which is immediate.

Starting this topic, we said that there is a deep relation between

integrals and areas, but in the sequel we seemed to neglect the last

concept. We ask the reader to accept our apologizes and bring to their

attention two mathematical gems, in which they will surely have the

occasion to play around with areas. If only this was easy to see... In fact,

these problems are discrete forms of Young and Steffensen inequalities

for integrals.

Example 10. Let a1 ≥ a2 ≥ · · · ≥ an+1 = 0 and let b1, b2, . . . , bn ∈
[0, 1]. Prove that if

k =

[
n∑

i=1

bi

]
+ 1,

273



then
n∑

i=1

aibi ≤
k∑

i=1

ai.

Saint Petersburg Olympiad, 1996

Solution. The very experienced reader has already seen a resem-

blance with Steffensen’s inequality: for any continuous functions f, g :

[a, b] → R such that f is decreasing and 0 ≤ g ≤ 1 we have∫ a+k

a
f(x)dx ≥

∫ b

a
f(x)g(x)dx,

where

k =
∫ b

a
f(x)dx.

So, probably an argument using areas (this is how we avoid in-

tegrals and argue with their discrete forms, areas!!!) could lead to a

neat solution. So, let us consider a coordinate system XOY and let

us draw the rectangles R1, R2, . . . , Rn such that the vertices of Ri are

the points (i − 1, 0), (i, 0), (i − 1, ai), (i, ai) (we need n rectangles of

heights a1, a2, . . . , an and weights 1, so that to view
k∑

i=1

ai as a sum

of areas) and the rectangles S1, S2, . . . , Sn, where the vertices of Si are

the points

 i−1∑
j=1

bj , 0

,

 i∑
j=1

bj , 0

,

 i−1∑
j=1

bj , ai

,

 i∑
j=1

bj , ai

 (where

0∑
j=1

bj = 0). We have made this choice because we need two sets of pair

wise disjoint rectangles with the same heights and areas a1, a2, . . . , an

and a1b1, a2b2, . . . , anbn so that we can compare the areas of the unions

of the rectangles in the two sets. Thus, looking in a picture, we find im-

mediately what we have to show: that the set of rectangles S1, S2, . . . , Sn

can be covered with the rectangles R1, R2, . . . , Rk+1. Intuitively, this is

evident, by looking again at the picture. Let us make it rigorous. Since
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the weight of the union of S1, S2, . . . , Sn is
n∑

j=1

bj < k + 1 (and the

weight of R1, R2, . . . , Rk+1 is k + 1), it is enough to prove this for any

horizontal line. But if we consider a horizontal line y = p and an index

r such that ar ≥ p > ar+1, then the corresponding weight for the set

R1, R2, . . . , Rk+1 is p, which is at least b1 + b2 + · · ·+ bp, the weight for

S1, S2, . . . , Sn. And the problem is solved.

And now the second problem, given this time in a Balkan Mathe-

matical Olympiad.

Example 11. Let (xn)n≥0 be an increasing sequence of nonnegative

integers such that for all k ∈ N the number of indices i ∈ N for which

xi ≤ k is yk < ∞. Prove that for any m,n ∈ N we have the inequality

m∑
i=0

xi +
n∑

j=0

yj ≥ (m + 1)(n + 1).

Balkan Mathematical Olympiad, 1999

Solution. Again, experienced reader will see immediately a similar-

ity with Young’s inequality: for any strictly increasing one to one map

f : [0, A] → [0, B] and any a ∈ (0, A), b ∈ (0, B) we have the inequality∫ a

0
f(x)dx +

∫ b

0
f−1(x)dx ≥ ab.

Indeed, it suffices to take the given sequence (xn)n≥0 as the one to

one increasing function in Young’s inequality and the sequence (yn)n≥0

as the inverse of f . Just view
m∑

i=0

xi and
m∑

j=0

yj as the corresponding

integrals and the similarity will be obvious.

Thus, probably again a geometrical solution is hiding behind some

rectangles. Indeed, consider the vertical rectangles with weight 1 and

heights x0, x1, . . . , xm and the rectangles with weight 1 and heights

y0, y1, . . . , yn. Then in a similar way one can prove that the set of these
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rectangles covers the rectangle of sides m + 1 and n + 1. Thus, the sum

of their areas is at least the are of this rectangle.

It will be difficult to solve the following beautiful problems using

integrals, since the idea is very well hidden. Yet, there is such a solution

and it is more than beautiful.

Example 12. Prove that for any a1, a2, . . . , an, b1, b2, . . . , bn ≥ 0 the

following inequality holds∑
1≤i<j≤n

(|ai − aj |+ |bi − bj |) ≤
∑

1≤i,j≤n

|ai − bj |.

Poland, 1999

Solution. Let us define the functions fi, gi : [0,∞) → R,

fi(x) =

{
1, t ∈ [0, ai],

0, t > ai

and gi(x) =

{
1, x ∈ [0, bi],

0, x > bi.

Also, let us define

f(x) =
n∑

i=1

fi(x), g(x) =
n∑

i=1

gi(x).

Now, let us compute
∫ ∞

0
f(x)g(x)dx. We see that

∫ ∞

0
f(x)g(x)dx =

∫ ∞

0

 ∑
1≤i,j≤n

fi(x)gj(x)

 dx

=
∑

1≤i,j≤n

∫ ∞

0
fi(x)gj(x)dx =

∑
1≤i,j≤n

min(ai, bj).

A similar computation shows that∫ ∞

0
f2(x)dx =

∑
1≤i,j≤n

min(ai, aj)

and ∫ ∞

0
g2(x)dx =

∑
1≤i,j≤n

min(bi, bj).
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Since∫ ∞

0
f2(x)dx+

∫ ∞

0
g2(x)dx =

∫ ∞

0
(f2(x)+g2(x))dx ≥ 2

∫ ∞

0
f(x)g(x)dx,

we find that∑
1≤i,j≤n

min(ai, aj) +
∑

1≤i,j≤n

min(bi, bj) ≥ 2
∑

1≤i,j≤n

min(ai, bj).

Now, remember that 2min(x, y) = x + y − |x − y| and the last

inequality becomes∑
1≤i,j≤n

|ai − aj |+
∑

1≤i,j≤n

|bi − bj | ≤ 2
∑

1≤i,j≤n

|ai − bj |

and since ∑
1≤i,j≤n

|ai − aj | = 2
∑

1≤i<j≤n

|ai − aj |,

the problem is solved.

Using this idea, here is a difficult problem, whose elementary solution

is awful and which has a 3-lines solution using the above idea... Of course,

this is easy to find for the author of the problem, but in a contest things

change!

Example 13. Let a1, a2, . . . , an > 0 and let x1, x2, . . . , xn be real

numbers such that
n∑

i=1

aixi = 0.

a) Prove that the inequality
∑

1≤i<j≤n

xixj |ai − aj | ≤ 0 holds;

b) Prove that we have equality in the above inequality if and only if

there exist a partition A1, A2, . . . , Ak of the set {1, 2, . . . , n} such that

for all i ∈ {1, 2, . . . , k} we have
∑
j∈Ai

xj = 0 and aj1 = aj2 if j1, j2 ∈ Ai.

Gabriel Dospinescu, Mathlinks Contest
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Solution. Let λA be the characteristic function of the set A. Let us

consider the function

f : [0,∞) → R, f =
n∑

i=1

xiλ[0,ai].

Now, let us compute∫ ∞

0
f2(x)dx =

∑
1≤i,j≤n

xixj

∫ ∞

0
λ[0,ai](x)λ[0,aa](x)dx

=
∑

1≤i,j≤n

xixj min(ai, aj).

Hence ∑
1≤i,j≤n

xixj min(ai, aj) ≥ 0.

Since

min(ai, aj) =
ai + aj − |ai − aj |

2
and ∑

1≤i,j≤n

xixj(ai + aj) = 2

(
n∑

i=1

xi

)(
n∑

i=1

aixi

)
= 0,

we conclude that ∑
1≤i<j≤n

xixj |ai − aj | ≤ 0.

Let us suppose that we have equality. We find that∫ ∞

0
f2(x)dx = 0

and so f(x) = 0 almost anywhere. Now, let b1, b2, . . . , bk the distinct

numbers that appear among a1, a2, . . . , an > 0 and let Ai = {j ∈
{1, 2, . . . , n}| aj = bi}. Then A1, A2, . . . , Ak is a partition of the set

{1, 2, . . . , n} and we also have

k∑
i=1

∑
j∈Ai

xj

λ[0,bi] = 0

278



almost anywhere, from where we easily conclude that∑
i∈Ai

xj = 0 for all i ∈ {1, 2, . . . , k}.

The conclusion follows.

And since we have proved the nice inequality∑
1≤i,j≤n

xixj min(ai, aj) ≥ 0

for any numbers x1, x2, . . . , xn, a1, a2, . . . , an > 0 let’s make a step fur-

ther and give the magnificent proof found by Ravi B. (see mathlinks

site) for one of the most difficult inequalities ever given in a contest,

solution based on this result:

Example 14. Prove the following inequality∑
1≤i,j≤n

min(aiaj , bibj) ≤
∑

1≤i,j≤n

min(aibj , ajbi).

G. Zbaganu, USAMO, 1999

Solution. Let us define the numbers ri =
max(ai, bi)
min(ai, bi)

− 1 and xi =

sgn(ai − bi) (if, by any chance, one of ai, bj = 0, we can simply put

ri = 0). The crucial observation is the following identity:

min(aibj , ajbi)−min(aiaj , bibj) = xixj min(ri, rj).

Proving this relation can be achieved by distinguishing 4 cases, but

let us remark that actually we may assume that ai ≥ bi and aj ≥ bj ,

which leaves us with only two cases. The first one is when at least one of

the two inequalities ai ≥ bi and aj ≥ bj becomes an equality. This case

is trivial, so let us assume the contrary. Then

xixj min(ri, rj) = bibj min
(

ai

bi
− 1,

aj

bj
− 1
)

= bibj

(
min

(
ai

bi
,
aj

bj

)
− 1
)

= min(aibj , ajbi)− bibj = min(aibj , ajbi)−min(aiaj , bibj).
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Now, we can write∑
1≤i,j≤n

min(aibj , ajbi)−
∑

1≤i,j≤n

min(aiaj , bibj) =
∑
i,j

xixj min(ri, rj) ≥ 0,

the last inequality being nothing else than the main ingredient of the

preceding problem.

Finally, here is a very funny problem, which is a consequence of

this last hard inequality. Consider this a hint and try to solve it, since

otherwise the problem is really extremely hard.

Example 15. Let x1, x2, . . . , xn some positive real numbers such

that ∑
1≤i,j≤n

|1− xixj | =
∑

1≤i,j≤n

|xi − xj |.

Prove that
n∑

i=1

xi = n.

Gabriel Dospinescu

Solution. Consider bi = 1 in the inequality from example 14. We

obtain: ∑
1≤i,j≤n

min(xi, xj) ≥
∑

1≤i,j≤n

min(1, xixj).

Now, use the formula min(u, v) =
u + v − |u− v|

2
and rewrite the

above inequality in the form

2n
n∑

i=1

xi −
∑

1≤i,j≤n

|xi − xj | ≥ n2 +

(
n∑

i=1

xi

)2

−
∑

1≤i,j≤n

|1− xixj |.

Taking into account that∑
1≤i,j≤n

|1− xixj | =
∑

1≤i,j≤n

|xi − xj |,

we finally obtain

2n
n∑

i=1

xi ≥ n2 +

(
n∑

i=1

xi

)2

,
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which can be rewritten as(
n∑

i=1

xi − n

)2

≤ 0

Therefore
n∑

i=1

xi = n.

Problems for practice

1. Show that for all a, b ∈ N∗

ln
(

bn + 1
an + 1

)
<

1
an + 1

+
1

an + 2
+ · · ·+ 1

bn
< ln

b

a
.

2. Prove that for any a > 0 and any positive integer n the inequality

1a + 2a + · · ·+ na <
(n + 1)a+1 − 1

a + 1

holds. Also, for a ∈ (−1, 0) we have the reversed inequality.

Folklore

3. Prove that for any real number x

n

n∑
k=0

x2k ≥ (n + 1)
n∑

k=1

x2k−1.

Harris Kwong, College Math. Journal

4. Let a continuous and monotonically increasing function f :

[0, 1] → R such that f(0) = 0 and f(1) = 1. Prove that

9∑
k=1

f

(
k

10

)
+

10∑
k=1

f−1

(
k

10

)
≤ 99

10
.

Sankt Petersburg, 1991

5. Prove the following inequality

an + bn

2
+
(

a + b

2

)n

≥ 2 · an + an−1b + · · ·+ abn−1 + bn

n + 1

for any positive integer n and any nonnegative real numbers a, b.
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Mihai Onucu Drambe

6. Prove that if a1 ≤ a2 ≤ · · · ≤ an ≤ 2a1 the the following inequality

holds

an

∑
1≤i,j≤n

min(ai, aj) ≥

(
n∑

i=1

ai

)2

+

(
2n−

n∑
i=1

ai

)2

.

Gabriel Dospinescu

7. For all positive real number x and all positive integer n we have:(
2n

0

)
x

−

(
2n

1

)
x + 1

+

(
2n

2

)
x + 2

− · · ·+

(
2n

2n

)
x + 2n

> 0.

Komal

8. Prove that the function f : [0, 1) → R defined by

f(x) = log2(1− x) + x + x2 + x4 + x8 + . . .

is bounded.

Komal

9. Prove that for any real numbers a1, a2, . . . , an

n∑
i,j=1

ij

i + j − 1
aiaj ≥

(
n∑

i=1

ai

)2

.

10. Let k ∈ N, α1, α2, . . . , αn+1 = α1. Prove that

∑
1≤i≤n
1≤j≤k

αk−j
i αj−1

i+1 ≥
k

nk−2

(
n∑

i=1

αi

)k−1

.

Hassan A. Shah Ali, Crux Mathematicorum

11. Prove that for any positive real numbers a, b, c such that a+ b =

c = 1 we have:(
1 +

1
a

)b(
1 +

1
b

)c(
1 +

1
c

)a

≥ 1 +
1

ab + bc + ca
.

Marius and Sorin Radulescu
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12. Prove that for all a1, a2, . . . , an, b1, b2, . . . , bn ≥ 0 the inequality

holds ∑
1≤i,j≤n

min(ai, aj)

 ∑
1≤i,j≤n

min(bi, bj)

 ≥

 ∑
1≤i,j≤n

min(ai, bj)

 .

Don Zagier

13. Prove that for any x1 ≥ x2 ≥ · · · ≥ xn > 0 we have

n∑
i=1

√
x2

i + x2
i+1 + · · ·+ x2

n

i
≤ π

n∑
i=1

xi.

Adapted after an IMC 2000 problem

14. Let ϕ be Euler’s totient function, where ϕ(1) = 1. Prove that

for any positive integer n we have

1 >

n∑
k=1

ϕ(k)
k

ln
2k

2k − 1
> 1− 1

2n
.

Gabriel Dospinescu

15. Let p1, p2, . . . , pn some positive numbers which add up to 1 and

x1, x2, . . . , xn some positive real numbers. Let also

A =
n∑

i=1

aixi and G =
n∏

i=1

xpi
i .

a) Let us denote

I(x, a) =
∫ ∞

0

tdt

(1 + t)(x + at)2
.

Prove that

ln
A

G
=

n∑
i=1

pi(xi −A)2I(xi, A).

Deduce the arithmetic-geometric inequality.

b) Suppose that xi ≤
1
2

and define A′, G′ the corresponding means

for 1− xi. Prove that
A

G
≥ A′

G′ .

Oral examination ENS
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16. Prove that for any positive real numbers x1, x2, . . . , xn such that
n∑

i=1

1
1 + xi

=
n

2
,

we have the inequality ∑
1≤i,j≤n

1
xi + xj

≥ n2

2
.

Gabriel Dospinescu

17. Prove that we can find a constant c such that for any x ≥ 1 and

any positive integer n we have∣∣∣∣∣
n∑

k=1

kx

(k2 + x)2
− 1

2

∣∣∣∣∣ ≤ c

x
.

IMC, 1996

18. Let 0 = x1 < · · · < x2n+1 = 1 some real numbers. Prove that if

xi+1 − xi ≤ h for all 1 ≤ i ≤ 2n then

1− h

2
<

2n∑
i=1

x2i(x2i+1 − x2i−1) <
1 + h

2
.

Turkey TST, 1996

19. Prove that for any a1, a2, . . . , an ≥ 0 we have the following in-

equality ∑
1≤i,j≤n

aiaj

i + j
≤ π

n∑
i=1

a2
i .

Hilbert’s inequality

284


